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Abstrat

A new form of the e�etive nulear interation is presented whih is density-

dependent and separable in oordinate spae. Calulations are made of the prop-

erties of the even-even losed-shell nulei

16

O,

34

Si,

40

Ca,

48

Ca,

48

Ni,

56

Ni,

68

Ni,

78

Ni,

80

Zr,

90

Zr,

100

Sn,

114

Sn,

132

Sn,

146

Gd and

208

Pb as well as in�nite symmetri and

asymmetri nulear matter and neutron stars. Ground state observables are al-

ulated in the Hartree-Fok approximation. Corretions are alulated for binding

energies by summation of the perturbation series up to third order. The orre-

tion terms in the series are found to be small and onvergent, giving on�dene

that the method is appliable to the interation presented.
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Chapter 1

Introdution

1.1 Nulear Struture Theory

The siene of nulear struture attempts to explain the phenomena arising in

the atomi nuleus in terms of the protons and neutrons whih onstitute it and

the fores under whih they interat. The type of phenomena whih are seen in-

lude the nulear mass, its size and shape, and the rih spetra of exited states,

eah with ertain good quantum numbers and exitation energies whih may be

well-de�ned or broad resonanes, and may be identi�able as single-partile or

olletive behaviour. In weakly bound nulei near the neutron drip line suh ex-

otia as neutron skins and halos are in evidene. At the other extreme, near the

proton drip-line, proton radioativity is observed. As well as these observables

in the time-independent problem, one observes phenomena in nulear reations

whih a theory of nulear struture needs to address suh as the reation ross

setions, �ssion barriers and lifetimes. The number of partiles of a self-bound

nulear system ranges from two nuleons in the deuteron to nearly three hundred

in the super-heavy nulei urrently being studied[1, 2, 3℄. Furthermore neutron

stars are thought to be made of nulear matter, bound due to gravitational fores,

and under more extreme physial onditions than \ordinary" nulear matter, but

presumably subjet to the same interations.

The ability to explain all these phenomena is ompliated by two things. The

more fundamental of these is the fat that the nulear interation is not fully un-

derstood, despite a onsiderable amount of e�ort spend in studying it. In fat,

Hans Bethe one suggested that more endeavour had been spent in studying the

nulear fore problem than any other problem in the history of siene, and this

was in 1956[4℄. The fore between two nuleons must be ultimately desribed by

the ombined e�et of the fores between their quark and gluon onstituents or

even from more fundamental onstituents, should suh things exist. Work exists

whih desribes the fores between observed partiles as derived from the under-

lying quark-quark interations[5℄ but, as yet, no full nuleon-nuleon interation

derived just from more fundamental mirosopi onsiderations is available. All

1
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interations used in alulations of nulei ontain, at least in part, phenomenol-

ogy. That nuleons are made of more fundamental onstituents is not to say that

one should be solving the many-body Shr �odinger equation for a system of 3A (or

more) quarks. Sine nuleons are the only partiles atually observed in nulei, it

is ertainly to be expeted that an expression for the interation binding the nu-

leons together an be written in terms of the nuleon oordinates and quantum

numbers without neessary reourse to the presumed substruture. This argument

is analogous to the fat that one desribes atoms and moleules in terms of the

eletron oordinates and degrees of freedom even though suh systems manifestly

ontain protons and neutrons.

The seond diÆulty in produing results in the �eld of nulear struture is the

alulational omplexity involved in solving the mirosopi equations of many-

body quantum mehanis, espeially given the rather ompliated nulear inter-

ations posited. At the present, and for the foreseeable future, approximations

need to be made to perform alulations of the majority of nulei. These approx-

imations are often onsiderable.

1.2 Nulear fores and the many-body problem

1.2.1 Realisti Interations

The most fundamental nuleon-nuleon interations urrently used in nulear

struture alulations are the so-alled \realisti" potentials. These are based

around the assumption that the fore between two nuleons is dominated by me-

son exhange. This approah agrees with the quark model at large separations

when the �nite meson size and underlying quark struture are not relevant. The

short and intermediate range parts are phenomenologially parameterized to �t

nuleon-nuleon sattering data and the binding energy of the deuteron. Mod-

ern versions of these potentials, suh as the Argonne v18 potential[6℄ are usually

used in onjuntion with three-nuleon potentials[7, 8, 9℄ sine three-nuleon

e�ets seem to be important in nulei, as evined by so-alled Borromean nu-

lei, whih are bound and onsist of a ore and two loosely bound partiles, but

whih would not be bound if one of these partiles were absent. The neessity of

three-body interation is also seen in the way the two-body interations �tted to

two-body data alone fails to �t the binding energy of the triton and heavier nulei.

The great drawbak with using a \realisti" potential is that they are funtionally

rather ompliated, onsisting of many terms, eah dependent upon the states of

the partiles, and they have a hard-ore, whih is to say that the potential be-

omes very strongly repulsive at small separation, so that \obvious" tehniques

of many-body quantum mehanis suh as perturbation theory, or the standard

Hartree-Fok approximation may not be used and rather more ompliated teh-

niques need to be implemented. In addition, these fores are �tted to free nuleon
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S

0

part of the Argonne v18 potential. The pp and nn potentials are

idential and the pn potential is slightly di�erent from both. The urve shows the strong

repulsion ommon to most realisti interations.

data, so any e�ets whih arise only when many nuleons are present are not a-

ounted for, exept by the addition of many-body fores. Currently, no attempt

seems to be made to go beyond three-body interations. Figure (1.1) shows the

dominant part of the Argonne v18 potential. Note that the strength of the term

for zero separation is � 3 GeV whereas the attrative mid-range part whih is re-

sponsible for the binding is only about � 100 MeV. In the energy sale of nulear

physis, a GeV is a very large energy { it is roughly the rest mass of a nuleon.

There are a vast number of methods whih have been used to solve the many-

body Shr �odinger equation with realisti interations. The most venerable is the

Bruekner Theory[10℄, also known as the independent pair approximation whih

takes the short range orrelations into aount by summing the ladder series of

diagrams. Other suessful tehniques have been in the form of Fadeev [11℄,

Variational Monte-Carlo[12℄, Green's Funtion Monte-Carlo[13℄, Correlated ba-

sis funtion [14℄ and oupled-luster[15, 16℄ alulations. These have allowed for

the study of a number of light nulei up to A � 7, as well as the spherially sym-

metri

16

O and

40

Ca. As omputational tehniques and omputer power advane,

one would expet to alulate heavier and heavier nulei with thesemethods; how-

ever, sine the omplexity of a full many-body problem inreases ombinatorially

as a funtion of the number of partiles, it is not expeted that one would be able

to alulate all, or even the majority of, known nulei in this way in the immediate

future.
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1.2.2 E�etive interations

In using an e�etive interation one is attempting to onstrut a form of the nulear

fore whih is typially simpler in form than the realisti interations and is eas-

ier to use within alulational frameworks amenable to the alulation of medium

and heavy nulei. For instane an e�etive interation may be parameterized in

suh a way as to avoid having a hard ore. This is not as unreasonable as it might

sound; if the fore is intended for use in the alulation of �nite nulear properties

rather than, say, sattering data, the Pauli exlusion priniple keeps the nule-

ons suÆiently far apart that they very rarely feel this hard ore repulsion. It is

harateristi of e�etive interations that they are suited for spei� systems and

alulational tehniques. They are widely used in single-partile models, whih

dominate the mirosopi alulations of medium and heavy nulei.

The G-matrix expansion[17℄ provides a link between the realisti and e�etive

interations sine it derives a \renormalized potential" from a realisti intera-

tion whih may be used for alulation in the same kind of situations as purely

phenomenologial e�etive interations.

In single partile models it is assumed that eah nuleon moves in an average

�eld due to the ation of the other nuleons. By this assumption one transforms

the N-body problem into N one-body problems, whih are muh easier to solve.

Single partile models are often used as the starting point for more sophistiated

alulations. The arhetype of this paradigm is the shell-model[32℄, whih as-

sumes a given stati one-body potential whih reates a spetrum of single-partile

states, oupied by the nuleons. The nuleons in these states then interat with

eah other via e�etive interations whih are either phenomenologial or mi-

rosopially derived from a realisti interation to take into aount the Hilbert

spae assumed in the single partile model[33℄. Although this is a omputation-

ally easier proess than the above methods with a full realisti interation, one

must be near a losed shell in heavy nulei for a shell-model alulation to be fea-

sible. Again, as tehniques and omputing advane, the boundaries of the nulear

hart of areas losed to the shell model will reede, but they will not be eliminated

ompletely for some time. Furthermore, the theoretial basis of the shell model

rests on a number of assumptions and approximations whih are not always well

justi�ed[18℄, although this is true of the use of e�etive interations in general.

Furthermore, in the shell-model, there is typially no link between the interation

whih produes the mean �eld, the single partile states and all the ground state

properties, and the interation whih ats between the valene nuleons giving

rise to the exited states.

1.2.3 Hartree-Fok alulations

The only fully mirosopi models whih are, at present, used to alulate the

entire range of nulei are the Hartree-Fok(HF) mean �eld method and its rel-
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ativisti ounterpart, the Relativisti Mean-Field(RMF) method. They provides

the bulk properties of the ground state and single partile spetrum, whih an

then be used as a starting point for shell-model alulations, but from a nu-

lear e�etive interation rather than an assumption. First introdued in atomi

physis[19℄, the HF method was used to alulate nulear properties with a wide

range of interations (see e.g. the exhaustive summary of Svenne[20℄), but it

was not until density-dependent interations, suh as Skyrme's interation, used

by Vautherin and Brink[21℄, and the surfae delta interation[44℄, were used

that a Hartree-Fok alulation produed results whih �tted both ground-state

radii and binding energies at the same time. The key to this was the intera-

tions' density-dependene, giving rise to an extra potential in the mean-�eld {

the so-alled \rearrangement potential". Sine then, many parameterizations of

the Skyrme interation have been made, as well as some modi�ation of its fun-

tional form. It has been applied to nulei aross the periodi table as well as to

neutron stars[22℄. A link between the density-dependent e�etive interations

like that of Skyrme and the realisti interations was provided by Negele[23℄.

Extended versions of Skyrme's interation have even been used in shell-model

alulations to both generate the single partile basis and then, unaltered, as a

residual interation[24, 25℄. By doing a shell model alulation, however, one

again limits the range of nulei that the tehnique may be applied to.

Despite the great ahievements of the modern e�etive interations used in

mean-�eld alulations, they all have the harateristi of being short-, or zero-

range, whih makes them unsuitable for use in perturbation theory alulations,

sine the matrix elements involved are too large (the perturbation is not weak

enough).

This means that one of the simplest and most elegant tehniques for aounting

for both single-partile and olletive behaviour, and for both ground and exited

state properties within one framework, with the same interation, is not available

for use with the fores so far mentioned. The great utility of the perturbation

theory is that it is omputationally feasible to alulate the lowest order diagrams

for any nuleus, and so one ould alulate a muh better approximation to the

exat wavefuntion than in a mean-�eld alone without needing to stay lose to the

losed shells. As mentioned above, e�etive interations may di�er in form quite

onsiderably from realisti interations so that one need not have a short range

repulsion. So too, then, one an attempt to parameterize the e�etive interation

in suh a way that it is not of a very short range to use it in normal perturbation

theory.

Motivated by the ideas presented above, this thesis supposes that there exists

an e�etive nulear interation with whih the tehniques of standard many-body

perturbation theorymay be used to alulate observables, and that this interation

is of omparable quality to ontemporary e�etive interations. The fous is solely

on the ground states of spherial losed-shell nulei and nulear matter sine these

are the simplest systems to alulate and therefore present the most onvenient
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systems for reating a new e�etive interation. The thesis is organised as follows:

Chapter 2 disusses the methods used to solve the many-body Shr �odinger

equation for the interation being used, whih itself is the subjet of hapter 3,

in whih its form and harater are expounded. Chapter 4 deals with some of the

omputational details and approximations whih a�et the alulation. Chapter

5 disusses the numerial harater of the fore and explores how the di�erent

parts of the fore a�et observables. The following two hapters give the physial

results; Chapter 6 ontains details of the nulear matter and neutron star alula-

tions and Chapter 7 presents the results of alulation with �nite nulei. Chapter

8 summarises the work.



Chapter 2

Many-Body Perturbation Theory

2.1 Single-partile theories

An oft-used tehnique in quantum mehanis is to separate the Hamiltonian of an

insoluble problem into two parts, one of whih is solvable and the other not. The

tehnique relies on the ability to hoose the separation suh that the solvable part

gives the dominant e�et and the remaining part is small and may be treated as a

perturbation.

A useful way to perform this separation, in the ase of a many-body system

subjet to two- (or more) body interations, is to add and subtrat a single partile

potential, U(r), term to the Hamiltonian to give

H = T(r)+ V

1

(r) + V(r

1

; r

2

) = [T(r)+ V

1

(r) +U(r)℄

| {z }

H

0

+V(r

1

; r

2

) -U(r)

| {z }

H

1

: (2.1)

The utility of this Ansatz is that the zeroth order problem of solving the many-

body Shr �odinger equation with H

0

as the Hamiltonian may be a good approxi-

mation to the true solution and will, for a sensible hoie of U(r) be muh easier

to obtain. In general, models whih use this separation are termed singe-partile

or independent-partile models. Sine the independent partiles are fermions,

whether atual nuleons or quasi-partiles, the ground state many-body wave-

funtion is a Slater determinant of single partile states, '

i

(r

i

),

�(r

1

; r

2

; : : : ; r

N

) = A

Y

i

'

i

(r

i

): (2.2)

Correlations are then de�ned as the orretions whih need to be added to the

independent partile model to arrive at the true solution. Sine the results of the

independent partile model depend upon the hosen potential, U(r), in Equation

(2.1) so, too, do the orrelations. When one talks about single partile alulations

already ontaining orrelations, as is often the ase with density-dependent HF

alulations[97℄, it is usually meant that one onsiders an e�etive interation to

7



CHAPTER 2. MANY-BODY PERTURBATION THEORY 8

be, in priniple, a renormalized realisti interation. The solution of the e�etive

interation in a single-partile model is then taken to inlude both single-partile

and orrelation e�ets of the realisti interation. Of ourse, a purely single-

partile model an never show ertain orrelation e�ets, suh as the non-zero

oupation probability of states above the Fermi level[26℄, unless one introdues

quasi-partiles.

There are many ways to alulate these orrelations. The textbooks of Ring and

Shuk[28℄, deShalit and Feshbah[27℄ and Eisenberg and Greiner[39℄ desribe

many of the methods used at the time of their publiations (up to 1980). Some

other methods were mentioned in the previous hapter. Presented here is the

tehnique used in this Thesis, along with some mention of the relation to other

methods.

2.1.1 One-body potential

The presription for generating the one-body part, U(r), failitating the separa-

tion of the Hamiltonian varies between approahes. One approah is to make the

one-body part essentially trivial by hoosing a well-know single-partile poten-

tial to augment the kineti energy term, suh as a harmoni osillator potential.

This is the approah usually taken by the shell model. In its simplest form the

shell model ontains only this spherial single partile potential with a spin-orbit

interation [29℄ or for deformed nulei, the extension to a deformed osillator ba-

sis was provided by Nilsson[30℄. More reently the residual interation has been

treated in whih the alulational e�ort is spent in trying to solve the Shr �odinger

equation exatly by diagonalizing the full Hamiltonian in the basis given by the

single partile potential. Typially this is a large problem whih neessitates a

trunation in on�guration spae, although \no-ore" alulations have reently

been performed for the lightest nulei[31℄. The large alulations are possible

sine the Hamiltonian matries are typially sparse in this representation so an

be diagonalized by the Lanzos method. These tehniques are reviewed in [32℄.

By hoosing the single partile potential in this way, one separates the potential

whih generates the single partile states from the interation, whih gives the

spetrosopy.

Another hoie of single partile potential is to pik the \best" potential. In

this ontext, best means the potential whih results in the Slater determinant so-

lution whih minimizes the expetation value of the full Hamiltonian, H = H

0

+H

1

.

The minimization proedure uses a variational priniple whih has, as the varia-

tional parameters, the single partile wavefuntions in the Slater determinant.

Suh a method for hoosing the potential U is alled the Hartree-Fok method

and is desribed in Appendix A; it is the tehnique used in this work to obtain

the single partile states whih de�ne the many-body ground state. Being a vari-

ational tehnique, only the lowest energy state is given as its solution, although

one an extend the tehnique to exited states by inluding Lagrange multipliers



CHAPTER 2. MANY-BODY PERTURBATION THEORY 9

and performing so-alled onstrained Hartree-Fok alulations[28℄. One major

advantage with using the HF basis for perturbation alulations is that the Slater

determinant of the single partile states has the property that matrix elements of

the Hamiltonian between the ground state and any one-partile one-hole exita-

tion vanish identially. This property is known as Brillouin's Theorem[35℄ and

greatly simpli�es the perturbation alulations if the HF Hamiltonian de�nes the

unperturbed problem. In partiular it means that the lowest non-zero term in the

perturbation theory is the seond order term. It should be pointed out that most

HF alulations in nulei are arried out without the intent of \going further"; i.e.

it is possible to get a rather good desription of nulear ground states from the

mean-�eld alone. This fat is one of the premises of the present study { that most

of the ground-state properties arise from the mean{�eld. It is the additional on-

tention that by a judiious hoie of interation one an alulate higher orders

of perturbation theory and thereby desribe e�ets beyond the mean �eld, whih

an not be aounted for by a single partile model alone.

2.2 Many-Body Perturbation Theory

The tehniques of Many-Body perturbation theory provide a useful language for

disussion of the methods of alulating orrelations, as well as giving an intu-

itive graphial representation. Appendix B gives a derivation of the Rayleigh-

Shr �odinger perturbation theory and its appliation to a Hamiltonian with two-

body interation, using the Hartree-Fok states as the referene state. Alterna-

tive derivations are widely available in the literature[34, 35, 36, 37, 38, 39℄. The

graphial tehnique is disussed in Appendix C for Hugenholz diagrams. The alter-

native formulation in terms of Goldstone diagrams are disussed in the literature

(see e.g. [40℄).

The method used in this thesis is to evaluate diagrams diretly for the vauum

amplitude diagram-by-diagram in a straightforward manner. This allows one to

write down the total energy of the system in a series

E = E

HF

+ E

2

+ E

3

+ � � � (2.3)

and to evaluate eah term one by one and examine the onvergene properties.

The ontributions to the energy, E, to third order are given by

E

HF

=

X

a<�

F

hajT+ V

1

jai+

1

2

X

ab<�

F

habj

~

Vjabi (2.4)

E

(2)

=

1

4

X

a 6=b<�

F

X

r6=s>�

F

habj

~

Vjrsihrsj

~

Vjabi

�

a

+ �

b

- �

r

- �

s

: (2.5)
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E

(3)

=

1

8

X

a 6=b<�

F

X

6=d��

F

X

r6=s>�

F

habj

~

Vjrsihdj

~

Vjabihrsj

~

Vjdi

(�

a

+ �

b

- �

r

- �

s

)(�



+ �

d

- �

r

- �

s

)

+

1

8

X

a 6=b<�

F

X

r6=s>�

F

X

t6=u>�

F

habj

~

Vjrsihrsj

~

Vjtuihtuj

~

Vjabi

(�

a

+ �

b

- �

r

- �

s

)(�

a

+ �

b

- �

t

- �

u

)

+

X

a 6=b6=<�

F

X

r6=s 6=t>�

F

habj

~

Vjrsihrj

~

Vjatihstj

~

Vjbi

(�

a

+ �

b

- �

r

- �

s

)(�

b

+ �



- �

s

- �

t

)

: (2.6)

It is to this order that the diagrams are alulated in this Thesis. The expliit

diagrammati representation of these terms is given in Appendix C.

As a measure of the strength of the perturbative interation, H

1

, the dimen-

sionless parameter � is de�ned as

� =

1

4

X

ab��

F

X

rs>�

F

�

�

�habj

~

Vjrsi

�

�

�

2

j�

a

+ �

b

- �

r

- �

s

j

2

(2.7)

whih is identi�ed as the average number of partiles the seond order orrelation

exites from the Hartree-Fok ground state.

The perturbation theory gives a series for any observable, not just the energy

sine it produes a series for the exat wavefuntion, j	i, whih is of the form

j	i = j�

HF

i+

X

ab<�

F

X

rs>�

F

C

rs

ab

j�

ab

rs

i+ � � � (2.8)

where�

HF

is the Hartree-Fok ground state Slater determinant, and�

rs

ab

is a Slater

determinant with two partiles exited from the HF ground state into higher HF

orbitals. The ellipsis indiates that higher order orretions exists whih involve

exiting more partiles from the HF ground state into higher states. The wave-

funtion is then expressed as a sum of Slater determinants. The perturbation

theory provides the oeÆients, C

rs

ab

et., in terms of the interation potential H

1

.

This Thesis, however, does not address orretions to any observables but the

energy sine the perturbation series for two-body observables suh as the energy

is thought to be muh larger than for one-body observables suh as the density

if one uses the HF basis for perturbation theory. The purpose of this Thesis is

to explore the possibility of �nding a potential for whih the perturbation theory

onverges and provides a reasonable �t in HF order for the ground state of spher-

ial nulei, rather than to alulate the large range of observables for all nulei,

whih remains for future work.

2.2.1 Density-Dependent Interation

In Appendix B it is seen that the separation of the Hamiltonian into the unper-

turbed (H

0

) and perturbation (H

1

) parts takes plae in suh a way that H

1

is just
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the two-body interation and H

0

is the solution of the normal Hartree-Fok equa-

tion. The omission of the density-dependene in this HF equation means that the

methods used in this Thesis impliitly involve the assumption that, at the level

of the perturbation theory, the densities are simple �xed funtions whih are not

related to the reation and annihilation operators and do not diretly result from

many-body fores. If one did not make this assumption, the method would be-

ome too ompliated. One would ertainly be restrited to integral powers of the

� and � parameters and even then, the appearane of a density in the denominator

of a funtion would require speial onsideration.

2.3 Other Methods

While the method in this Thesis involves summing, in priniple, all diagrams

in the perturbation expansion, in pratie, only a few are inluded sine the

series onverges quite quikly. Other tehniques used for nulear struture

alulations involve summing in�nite series of diagrams. The Random-Phase-

approximation[42℄ (RPA) method may be derived from the time-dependent

Hartree-Fok equations[41℄, or by linearizing the equations of motion[39℄. This

is equivalent to summing the sublass of diagrams whih inlude only the inser-

tions given in Figure 2.1[37℄.

In Bruekner Theory[38℄ the ground state of a nuleus is alulated using a

renormalized potential (the G-matrix) whih inludes the ladder diagrams, whih

is the series of diagrams featuring the insertion in Figure 2.2.

The seond order diagram (Appendix C, Figure C.4) features in both these se-

ries. In the third order the partile-partile diagram of Figure C.5 ontributes to

the Bruekner theory alulation and the partile-hole diagram to the RPA.

� � � �

Figure 2.1: Insertions inluded in the RPA alulation

�

Figure 2.2: Insertion in the series alulated by Bruekner theory



Chapter 3

Nulear Fore: Theory

Having disussed some aspets of nulear struture theory, ways in whih it is

usually approahed, and disussed the methods used in the present work to attak

the problem, it is lear that a new interation needs to be used. The riterion

whih it must satisfy are that is must �t single partile properties well in the

Hartree-Fok approximation and be weak enough to produe small and onverging

orretions in perturbation theory for many-body observables, partiularly the

binding energy.

3.1 Nulear Interation

The two-body fore used in this work onsists of a sum of terms eah of whih is

separable in oordinate spae. Eah term onsists of produts of one body opera-

tors of de�nite angular momentum, and the terms are lassi�ed aording to this

value as monopole, dipole and quadrupole terms for angular momenta l = 0, l = 1

and l = 2 respetively.

3.1.1 Monopole Interation

The monopole interation is in the form of a separable funtion, eah part of whih

is a salar. In oordinate spae it is written

V(r

1

; r

2

) = W

a

f

�

a

�

�

a

(r

1

)�

�

a

(r

2

)(1+ a

a

(�

+

1

�

-

2

+ �

-

1

�

+

2

) + b

a

�

1z

�

2z

)

+ W

r

f

�

r

�

�

r

(r

1

)�

�

r

(r

2

)(1+ a

r

(�

+

1

�

-

2

+ �

-

1

�

+

2

) + b

r

�

1z

�

2z

)

+ kr

2

1

�(r

1

)r

2

2

�(r

2

); (3.1)

where the funtion f

�

is de�ned as

f

�

=

"

Z

all spae

�

�

�

(r)d

3

r

#

-1

; (3.2)

12
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and W

a

, �

a

, �

a

, a

a

, b

a

, W

r

, �

r

, �

r

, a

r

, b

r

, and k are parameters to be �tted to

experimental data. The �rst two terms in Equation (3.1) are funtionally idential

in form, but have their own set of parameters. The subsript a denotes the at-

trative term, so the strengthW

a

is taken to be negative. The subsript r denotes

the repulsive term, and W

r

is always taken to be positive.

In addition to this two-body interation there is a spin-orbit fore whih we

postulate as a one-body �eld of the Blin-Stoyle form[43℄. Its form is

V

s:o

(r) = 

1

r

��(r)

�r

l � s; (3.3)

where l is the orbital angular momentum operator for the partile and s is the

spin angular momentum operator. Note that this same Ansatz for the spin-orbit

interation has been used previously in HF alulations with e�etive interations

by Ehlers and Moszkowski[44℄ and Vautherin and Veneroni[45℄. It has a single

parameter  whih is �tted to the spin-orbit splitting of nulei.

3.1.2 Higher Multipole Interations

The multipole interations are written

V

D

(r

1

; r

2

) = W

D;q

1

;q

2

f

D

1

X

M=-1

(-1)

M

r

1

�(r

1

)Y

1M

(r̂

1

)r

2

�(r

2

)Y

1-M

(r̂

2

) (3.4)

V

Q

(r

1

; r

2

) = W

Q;q

1

;q

2

f

Q

2

X

M=-2

(-1)

M

r

2

1

�(r

1

)Y

2M

(r̂

1

)r

2

2

�(r

2

)Y

2-M

(r̂

2

): (3.5)

Here, W

D;q

1

;q

2

are onstant strength parameters for the dipole fore, with q

1

=

q

2

= p giving the strength for the proton-proton interation and q

1

= q

2

= n

for the neutron-neutron interation. Similarly onstants W

Q;q

1

;q

2

and for q

1

= q

2

give the pp and nn quadrupole fore strengths. In addition a term ating between

proton and neutron states in the quadrupole fore is onsidered with a strength

W

Q;p;n

. The funtions f

D

and f

Q

are introdued to ontrol the A-dependene of

the fore. In priniple they may be of a similar form to the f of the monopole

fore sine the integral of the density over all spae gives just the partile number

A. In the urrent work these funtions are taken to be A



, sine these terms

in the fore are not inluded in the mean-�eld and so no funtional variation is

performed where the results would depend on whether the fore was written as

density-dependent or not.

In addition the Coulomb interation is inluded. The diret part is imple-

mented exatly and the exhange term is treated in the Slater approximation[46℄.
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3.2 Philosophy

Having stated the form of the fore, some explanation is in order to desribe why

it is in the form it is. The following harateristis summarize the nature of the

interation, the rationale of whih shall be disussed here. The fore is separable.

This term is used here rather loosely - in fat it is the sum of separable terms, but

this usage seems ommon enough in the literature to be used in the present ase,

as well. By separable, it is meant that the terms in the fore are written as the

produt of a funtion of the (spae, spin and isospin) oordinates of partile one

multiplied by a funtion of the oordinates of partile two. Sine it annot matter

whih partile is labelled \one" and whih one is labelled \two", the two funtions

are always the same in eah term. Furthermore, the terms are separated aording

to the multipolarity of the one-body funtions whih make them up. Eah term in

the monopole interation onsists of a produt of two l = 0 funtions. In the dipole

term the funtions are l = 1 and in the quadrupole term they are l = 2. Another

important aspet of the fore is that itis density-dependent. The motivation for

writing the fore in this way is disussed in the setions below.

3.2.1 Separability and Multipolarity

The separability of the fore was hosen for two reasons. The �rst one is some-

what historial, and is also a reason behind the splitting up of the fore into

multipoles, and is based on the fat that a simple model of a separable fore

was used as a residual interation alled the pairing plus quadrupole (PPQ)

model[47, 48, 49, 50℄. In this older work, the interation is not density dependent

and is used in a trunated spae of an harmoni osillator potential. Their reasons

for onsidering suh a separable interation were that it would make the alu-

lations muh easier so that the model would be appliable, with 1960s omputer

tehnology, to the alulation of a wide range of nulei. This is not really an issue

today, but the suess of the model showed that a separable interation was a

viable way of parameterizing the e�etive nulear interation and despite its sim-

pliity (or, perhaps, beause of it), it is still used in shell-model alulations[51℄.

The PPQ Hamiltonian laks a monopole interation whih is neessary to give the

bulk properties of the nuleus like the binding energy and single partile ener-

gies and to provide a mehanism for saturation. If, then, one ould produe a

monopole interation to omplement the higher multipole fores, one would ob-

tain a full interation whih ould be used for a mirosopi desription of nulei

whih would both generate the one-body �eld and be used as the residual in-

teration. A similar approah has been onsidered reently in the ontext of the

shell model[52℄. This gives some rationale behind why the fore is split up into

multipoles and why the dipole and quadrupole terms are separable. The sepa-

rability of the higher multipoles is not really a suÆient reason for making the

monopole fore separable. In fat the main reason for doing so is so that the fore
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will be weak enough to perform perturbation theory. Standard e�etive intera-

tions, suh as the zero-range Skyrme interation are too strong for this. In the

paper whih �rst used the Skyrme interation in the HF approximation[21℄ the

authors aknowledge \a perturbation alulation would atually diverge beause

of the zero range". It is known that separable interations, several of whih are

desribed in a review by Kerman[53℄, are weak enough for perturbation theory

to be performed[54℄ so extending the separable multipole philosophy of the PPQ

model to inlude the monopole interation seems like a likely path to suess. On

the other hand, the quality of the results from earlier separable interations has

been rather poor by today's standards. The fore of Bressel et al.[55℄ was too

strong for normal perturbation theory to onverge and the set of partially sep-

arable potentials of Rouben, Riihim�aki and Zipse[56, 57, 58℄ have far too high

binding energies in nulear matter. The most suessful separable potential has

probably been that of Tabakin[59℄ whih has been used in HF plus perturbation

alulations similar to the present work[60, 54℄ but the �nite nulear properties

of this fore are not of the same quality as modern e�etive interations.

3.2.2 Density-dependene

Neither the PPQ interation as previously oneived nor separable interations

of monopole form have been density-dependent. In the ase of the residual in-

terations, whih is to say interations between nuleons whih determines the

spetrosopy after the ground state is alulated or assumed, this has led to them

to be onsidered in a restrited spae. To do otherwise would be problemati

sine they have an in�nite range. By inluding a density-dependene the range

an be limited in the fore itself and no trunations need to be made in the al-

ulation to avoid suh physial problems as an in�nite potential. In the ase of

the monopole interation, used to generate the bulk properties of the nuleus, it

was found that without the density dependene and the extra \rearrangement"

ontribution to the binding energy whih omes from it in the Hartree-Fok ap-

proximation, it was not possible to simultaneously �t nulear radii and binding en-

ergies, for attempts to do so with density-independent separable interations, see

Kerman's review[53℄. The introdution of density-dependene with the Skyrme

interation[21℄ and the �nite-range Gogny interation[62℄ hanged this feature of

HF alulations and shifted the fous of e�etive nulear interations to the lass

of density-dependent interations.

3.2.3 Range

As well as being density-dependent, other suessful phenomenologial e�etive

interations are all haraterised by a short range. In the ase of Skyrme's in-

teration the range is zero. In the Gogny interation parts of the Skyrme fore

were replaed by a �nite range Gaussian whih resulted in a fore whih drops
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o� quikly as the nuleons move apart. The separable density-dependent fore

stands in ontrast to these in that the fore is felt at long distane as well as short.

From the terms of the form

V(r

1

; r

2

) � �(r

1

)�(r

2

) (3.6)

it is seen that the only requirement for the fore to be felt between two nuleons

is that both the nuleons are situated inside the nuleus in a region where the

density is non-zero.

3.3 Term by term rationale

3.3.1 HF Mean �eld

The Hartree{Fok energy, E

HF

, and mean �eld are derived in Appendix E and the

results are show here for disussion. The energy is

E

HF

= T + E
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+
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�

�

�;q

1

;q

2

X

i;j<�

F

X

M=-�;�

(-1)

M

hijj[r

�

1

(r

1

)�(r

1

)Y

�M

(r̂

1

)℄ [r

�

2

�(r

2

)Y

�-M

(r̂

2

)℄jjii;

(3.7)

where T is the kineti energy and E

oul

is the Coulomb energy,

E

oul

=

1

2

e

2

Z Z

d

3

r

1

d

3

r

2

�

p

(r

1

)�

p

(r

2

)

jr

1

- r

2

j

-

3

4

e

2

 

3

�

!

1=3

Z

d

3

r [�

p

(r)℄

4=3

: (3.8)

The various quantities N and M with subsripts are integrals involving the one-

body densities (in the ase of the N funtions) or the nonloal densities (the M

funtions). They are all fully de�ned in the Appendix E.

The loal Hartree{Fok potential is

U

�

(x) =

X

�=a;r




W

�

f

�

�

h

N

�

�

(�

�

+ 1) + b

�

�

�

N

�

�

i

�

�

�

(x)

- W

�

(�

�

=2)

h

f

�

�

i

2

h

N

2

�

�

+ b

�

(�N

�

�

)

2

i

�

�

�

-1

(x)

- W

�

f

�

�

�

�

h

G

�

�

(x) + b

�

G

pp

�

�

(x) + b

�

G

nn

�

�

(x)

i

�

�

�

-1

(x)

+ W

a

(�

�

=2)[f

�

�

℄

2

M

�

�

�

�

�

-1

(x)
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+ W

�

b

�

�

�

f

�

�

h

�N

�

�

i

�

�

�

-1

(x)Æ�(x)

+ W

�

(�

�

=2)

h

f

�

�

i

2

�

b

�

h

M

pp

�

�

+M

nn

�

�

i

+ a

�

h

M

pn

�

�

+M

np

�

�

i�

�

�

�

-1

(x)

- W

�

a

�

f

�

�

�

�

h

G

pn

�

�

(x) + G

np

�

�

(x)

i

�

�

�

-1

(x)

�

+ 2kN

d

r

2

�(x) -

3

2

(r

2

�(x))

2

; (3.9)

where the funtions G(x) are de�ned in the Appendix E. The nonloal Hartree{

Fok potential is

U

�

(x; x

0

)�

b

(x) = -

X

�=a;r




W

�

f

�

�

�(x; x

0

)�

�

a

(x)�

�

a

(x

0

)

+ W

�

b

�

f

�

�

�

�

(x; x

0

)�

�

�

(x)�

�

�

(x

0

)

+ W

�

a

�

f

�

�

�

��

(x; x

0

)�

�

�

(x)�

�

�

(x

0

)

�

�

b

(x

0

); (3.10)

and the state-dependent spin-orbit term is

U

so

(x)�

b

(x) = 

 

1

x

w

b

��(x)

�x

-

1

x

��

w

(x)

�x

-

1

x

2

�

w

(x)

!

�

b

(x): (3.11)

The number w

b

is a weight fator and the density �

w

(x) is the spin-orbit

weighted density as de�ned in Appendix E.

This is just the potential whih arises from the monopole fore. As shown

in Appendix A, the Hartree term due to the multipole fores is zero for losed-

shell nulei and the exhange term is assumed to be negligible for the purposes of

alulating the mean-�eld. In addition, the Coulomb potential is

U

oul

(r) = e

2

Z

d

3

r

0

�

p

(r

0

)

jr - r

0

j

- e

2

 

3

�

!

1=3

�

1=3

p

(r): (3.12)

3.3.2 Density dependene

Having deided to try to �nd a fore whih was separable and density-dependent,

the most obvious hoie seemed to be a term of the form � �

�

(r

1

)�

�

(r

2

). Perhaps a

form like this with � = 1 would be the most obvious hoie, but parameters need

to be inluded to give one the degrees of freedom neessary to �t nulei. A term

like this, with just a onstant strength, has the problem that its ontribution to

the total energy goes roughly as A

2

not A, so it does not provide saturation of the

energy. Furthermore, the diret term it gives in the HF potential has a oeÆient

whih varies wildly aross the nulear hart, whereas it is known that the nulear

density and the depth of the single-partile potential is quite independent ofA, so

density-dependent HF potential should have largely A-independent oeÆients,
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as one �nds with the suessful Skyrme potential[21℄. The reason for this too-

strong dependene is that the diret energy of a separable fore is always going

to have the square of an integral of some funtion of the density, whih in the

present ase is roughly proportional to A, when it would be preferable to have

just one suh funtion. The remedy is to inlude in the oeÆient to the term a

funtion whih looks like one of these integrals and has a parameter whih an be

made, more-or-less, to anel it out. Whene the f parameter,

f �

1

R

�

�

(x)d

3

x

; (3.13)

whih anels one of the two fators of the N integral in the energy

N �

Z

�

1+�

(x)d

3

x: (3.14)

In the diret HF potential, there is one fator of f and one ofN so setting 1+� = �

gives an A-independent oeÆient to the density funtion in the mean-�eld whih

enables one to �t the whole range of nulei with similar depths of the mean-�eld

potential and similar entral densities. The possibility exists to vary the ondition

� = � + 1 to hange the �t, but only small variations away from this turn out to

produe anything sensible.

Some onsiderable e�ort was taken to try to �t a one-termed fore of this form

to a wide range of nulei. By one-termed it is meant that the fore onsisted only

of the kineti, and Coulomb terms plus a one-termed potential of the form of the

�rst line in Equation ( 3.1) without the seond line. Although it was possible to �t

the properties of a single nuleus this way, no overall parameterization presented

itself, so a modi�ation of the fore was neessary. So far there is a term with a

negative strength whih, in the mean �eld, goes as U(x) � �(x). A hint was taken

from the Skyrme-like fores, whih, as well as the leading term (proportional to t

0

{ see [21℄) have a extra term with an overall positive (i.e. repulsive) strength and

a higher power of the density (the term proportional to t

3

. Therefore, an extra

term in the separable potential, like the �rst, but with its own set of �, � and

strength (W) parameters is added. This is seond line of Equation(3.1).

3.3.3 Isospin-dependene

Without this term there is nothing in the fore whih aounts for the di�erent

physis whih arises in nulei with extreme values of isospin. The neessity for

suh and e�et has been known for a long time, whih is reeted in the earliest

semi-empirial mass formul�[76℄ by the inlusion of the asymmetry term. The

onventional hoie for introduing isospin-dependene in a two-body interation

is to add a term with the operator �

1

� �

2

or equivalently the isospin projetion

operator P

�

. In the present ase there is a slightly generalized form of the operator

�

1

� �

2

.
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The isospin matries are just the Pauli spin matries

�

�

=

 

0 1

1 0

!

�

y

=

 

0 -i

i 0

!

�

z

=

 

1 0

0 -1

!

(3.15)

and the isospin operator is

t =

1

2

�

the ation of whih on proton and neutron states is

t

z

jpi = -jpi; t

z

jni = jni: (3.16)

One an de�ne raising and lowering operators whih have the following properties:

t

+

jpi = jni; t

-

jni = jpi; (3.17)

with other operations zero:

t

-

jpi = t

+

jni = 0: (3.18)

These operators an be expressed in terms of the operators t

�

, t

y

and t

z

as

t

+

= t

�

+ it

y

; t

-

= t

�

- it

y

; (3.19)

and the reverse relations are

t

�

=

1

2

(t

+

+ t

-

); t

y

=

1

2i

(t

+

- t

i

): (3.20)

Now rewrite the operator �

1

� �

2

�

1

� �

2

= 4t

1

� t

2

= t

1x

t

2x

+ t

1y

t

2y

+ t

1x

t

2z

= (t

1+

+ t

1-

)(t

2+

+ t

2-

) - (t

1+

- t

1-

)(t

2+

- t

2-

) + 4t

1z

t

2z

= 2(t

1+

t

2-

+ t

1-

t

2+

) + 4t

1z

t

2z

= 2(�

+

1

�

-

2

+ �

-

1

�

+

2

) + �

1z

�

2z

; (3.21)

where the � raising and lowering operators are the same as those for t (3.17) { i.e.

they turn proton states in to neutron states and vie versa with no extra fator.

Generalizing this to allow di�erent parameters for the �rst two terms and the

last term allows one to have a fore whih breaks isospin symmetry, whih is to

say the p-p, n-n and n-p fores are not neessarily the same strength. The fator

multiplying the density-dependent terms is then

(1+ a

�

(�

+

1

�

-

2

+ �

-

1

�

+

2

) + b

�

�

1z

�

2z

); (3.22)

with � = a; r for the attrative and repulsive terms respetively.

Having this more general isospin operator gives one more degrees of freedom

in �tting the fore. Some modern realisti fores break isospin symmetry, suh as

the Argonne v18[6℄ potential and CD-Bonn[63℄, whih they do beause it �ts the

experimental data better[64℄. In an e�etive interation, then, one should not be

afraid of doing so.



CHAPTER 3. NUCLEAR FORCE: THEORY 20

3.3.4 Surfae Term

The fore as onstruted so far depends only on themagnitude of the density in the

viinity of the interating nuleon. This means that the fore is muh weakened

for nuleons at the surfae, over the region where the density is dropping. The

surfae, however, ought to play an important part in the interation sine it is

the weakly bound nuleons whih must take part in most sattering events. The

form of the surfae term is hosen to be a derivative of the density sine this

will be peaked at the surfae. The separable form was again hosen so that the

perturbation theory matrix elements would be suitably small and the Laplaian

operator was hosen so that eah one-body funtion in the separable fore would

be a salar.

3.3.5 Multipole terms

The reasons for inluding a multipole terms have been mentioned already. The

partiular form is that of the well-known separable multipole fores exept that a

density-dependene is added to allow the fore to be used in an HF alulation in

the full spae.

3.4 Choosing parameters - Experimental observables

The parameterization of the fore is hosen in a way that, it is hoped, may lend

itself to the desription of nulear properties. The riterion, then, for hoosing

the parameters is to �nd the set whih �ts observable data the best. The funtion

whih desribes the quality of the �t is the Chi-squared funtion whih is de�ned

as

�

2

(C

1

� � �C

N

) =

N

X

i

(C

i

- X

i

)

2

e

2

i

; (3.23)

where i sums over all the observed quantities, C

i

is the alulated values of the

observable, X

i

is the experimental value and e

i

is the error in the experimental

value, so that the better-known observables are given greatest weight.

3.4.1 Nulei

To explore this separable interation, a spherial HF ode, whih an be used with

losed shell nulei, has been written. In addition it provides a basis in whih

perturbation theory alulations may be performed. Only a few nulei are truly

spherial but it makes sense when developing a new interation to begin with the

omputationally more simple ases and proeed to more diÆult alulations only

when one has shown the simple ases work. The nulei taken in the �t in this work
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nuleus

16

O

34

Si

40

Ca

48

Ca

48

Ni

56

Ni

68

Ni

78

Ni

Z 8 14 20 20 28 28 28 28

N 8 20 20 28 20 28 40 50

nuleus

80

Zr

90

Zr

100

Sn

114

Sn

132

Sn

146

Gd

208

Pb

Z 40 40 50 50 50 64 82

N 40 50 50 64 82 82 126

Table 3.1: Nulei inluded in �t

are shown in table 3.4.1. Most of the numbers N and Z for the nulei onsidered

are generally onsidered to be magi. 40 is typially seen to be a shell losure

(the fp shell) but the next state (g

9=2

) lies very lose above it; there is not a large

shell gap. 14 is not usually onsidered to be a magi number, but the spin-orbit

splitting between the �rst p-states in light nulei is quite large so that it is a good

losed sub-shell. The same is true of 64 as of 14 where the splitting between the

d states provides a sub-shell losure and a moderate gap.

Data for these nulei, as desribed in the next setion are given in Chapter 7,

in whih the omparison of alulated and experimental properties is disussed.

3.4.2 Observables

The following observables are used in the �t:

� Ground state binding energy.

The mass, M, of a nuleus is

M(Z;N) = Zm

H

+Nm

n

- B(Z;N)=

2

: (3.24)

It is smaller than the mass of its isolated onstituents, Z hydrogen atoms and

N neutrons by an amount known as the binding energy. It is the energy of

the interation of the nuleons and is always positive for a bound nuleus.

It is related to the energy E(Z;N) by the relation

E(Z;N) = -B(Z;N): (3.25)

E is the quantity evaluated in quantum mehanis as the expetation value of

the total Hamiltonian of the system of Z protons andN neutrons bound in the

nuleus. It is the most reliable observable for ground state properties sine it

an measured quite easily and the observed quantity is diretly omparable

to the alulated expetation value.

� Single partile energies
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The single partile energies are not observables as suh in that there is no

operator whih ats on the many-body wavefuntion to give as its expeta-

tion value a single partile energy. Koopmans' theorem [65, 35℄ for density-

independent Hartree-Fok theory shows that the di�erene in energy be-

tween a nuleus E(N;Z) and a nuleus E(N;Z - 1) or E(N - 1; Z) is equal to

the single partile energy of the nuleus whih was removed. With a den-

sity dependent potential it is no longer true; the removal of a nuleon alters

the density making the fore hange. This means that the remaining nule-

ons \re-arrange" themselves to �nd the new lowest-energy on�guration. In

addition, as pointed out by Bruekner and Goldman[68℄, one a partile is

removed, its set of quantum numbers beomes available as an intermediate

state to the remaining nuleons for sattering events whih will results in

perturbative orretions. In the present density-dependent HF alulation,

the e�et of a hange in the ground state density is already taken into a-

ount so that for the least bound state there is no orretion but the removal

of more deeply bound states may ause a substantial orretion. No alu-

lation along these lines is made in the present ase. A similar alulation by

K�ohler[69℄ shows that the orretion for the least bound states is small but

the orretion to deeply bound states may be as muh as several MeV.

Despite these aveats, energies and quantum numbers an be assigned to

resonanes seen in sattering experiments and the results of nulear strip-

ping or pikup reations whih tally with the expeted single partile states

predited by mean-�eld models. Although the absolute values of experimen-

tal single partile energies an not be ompared with density-dependent HF

values exatly, at least the relative orderings may be.

� Form fators

The form fator of a given density distribution is its Fourier transform:

F(q) =

Z

d

3

r e

ik�r

�(r): (3.26)

For spherially-symmetri harge distributions the expression redues to

F(k) = 4�

Z

1

0

dr r

2

j

o

(kr)�(r); (3.27)

where j

0

= sin(x)=x is the zeroth order spherial Bessel funtion. The harge

form fator F

C

(k) is related to the experimental eletron sattering ross-

setion[66℄

d�

d


(k) / jF

C

(k)j

2

: (3.28)

The harge density di�ers from the proton density in that it aounts for the

�nite proton size. The presription for doing this in the present work is to
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fold the intrinsi proton density with the nulear proton density whih is ap-

proximated by a Gaussian �tted to the proton size. This method is the same

as that used by Negele[67℄ exept that he also onsiders a entre-of-mass

orretion. In Fourier spae, the orretion beomes a simple produt of

form fators. Given the assumption of a Gaussian form for the single proton

density, the Fourier transform is also a Gaussian and is, with a numerial �t

to the proton size,

F

�

(k) / e

-

(0:65k)

2

4

: (3.29)

The harge form fator is then

F

C

(k) = NF

p

(k)F

�

(k); (3.30)

and is normalized so that F(0) = 1.

� Radii

The mean square radius assoiated with a density distribution is de�ned, for

a spherial distribution, as

hr

2

i

q

�

R

dr r

4

�

q

(r)

R

dr r

2

�

q

(r)

: (3.31)

The subsript q labels the density and ould be an isospin number to give

the proton or neutron densities, or a label to indiate that it is the harge

density, or the total partile density. The root mean square (rms) radius is

then de�ned as

r

rms;q

�

q

hr

2

i

q

: (3.32)

The rms radius of the harge density alulated using the interation may be

ompared with that of the harge density alulated as the Fourier transform

of the eletron sattering form fator.



Chapter 4

Computational Implementation

4.1 HF equations in a Basis

The Hartree-Fok equations involve a self-onsisteny problem in that the poten-

tial in the one-body Shr �odinger equation depends on the wavefuntions whih

result as a solution of the equation. The usual method of solution of the HF

equations is an iterative proedure shown shematially in �gure 4.1.

Make an initial guess of the

single partile wavefuntions

?

Construt new potential from

wavefuntions and solve HF

equation

?

Does the solution of the

HF equation yield wavefun-

tions di�erent from those

used to reate the potential?

6

yes

Equations are solved

?

no

1

2

3

4

Figure 4.1: Shemati representation of the proedure for solving the HF equations

24
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Step 2 in Figure 4.1 is the one whih an be diÆult to aomplish. Construting

the potential from the wavefuntions an pose some diÆulty sine the potential

inludes the Fok (exhange) term whih involves multidimensional integration for

the funtions denoted asM and G in the expression for the Hartree-Fok potential

(E.91). In the ase of spherial nulei, the multidimensional integrals are never

more than two-dimensional and are evaluated diretly in oordinate spae using

the method of Gaussian quadrature[70℄.

The Hartree-Fok equations are integro-di�erential equations. The way they

are usually solved it by either diret numerial solution on a grid, or expansion

in a basis and the transformation to a matrix equation. In the present work it

was found that the extremely non-loal harater of the potential, as well as the

strong density-dependene, makes the �rst tehnique numerially unstable so the

seond method was used.

To solve theHartree-Fok equations by basis expansion, a basis is hosen whih

is taken to be the simple harmoni osillator. The hoie of the osillator is taken

beause the eigenstates are analytially alulable and matrix elements of simple

funtions (suh as the kineti energy) are already known. One proeeds by expand-

ing a Hartree-Fok wavefuntion, '

a

, in a trunated basis of harmoni osillator

wavefuntions, �

�

,

'

a

(x) =

X

�

C

a�

�

�

(x); (4.1)

where a represents all the quantum numbers of the HF state and � represents all

the quantum numbers of the harmoni osillator state. x represents all relevant

oordinates (inluding spin and isospin).

The symmetries of the problem are inluded in the basis wavefuntions. The

spherially symmetri harmoni osillator wavefuntions are used and the HF

wavefuntions are assumed to have the same symmetries:

'

a

(x) = R

N

a

j

a

l

a

(x)Y

j

a

l

a

m

a

(x̂) �

�

a

=

X

n

�

C

(lj�m)

a

N

a

n

�

R

n

�

l

�

(x)Y

j

�

l

�

m

�

(x̂)�

�

�

Æ

l

a

l

�

Æ

j

a

j

�

Æ

m

a

m

�

Æ

�

a

�

�

; (4.2)

where the relevant quantum numbers are written out in full. Here, the funtion

R is the radial part of the HF wave funtion and the funtion R is the radial part

of the osillator wave funtion (see Appendix D). The rest of the wave funtion is

kept the same in the two representation in Equation (4.2) so the HF wavefuntions

are only, in fat, expanded in the priniple quantum number. Rather then always

make this expliit, the expansion oeÆients may be more frequently written in

the more ompat form (4.1). The funtions � are isospinors and Y are spinor-

spherial harmonis, whih are the tensor produt of a spherial harmoni and a

spinor:

Y

ljm

j

=

X

m

l

m

s

hlm

l

1=2m

s

jjm

j

iY

lm

l

�

1=2m

s

: (4.3)
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Note that this basis expansion provides a onvenient way to hoose the initial

wavefuntions in step 1 { they may be taken as the harmoni osillator funtions.

Now onsider the Hartree-Fok equation from appendix A (A.6)
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#
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i

(x) -
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i

(y): (4.4)

This general HF equation does not expliitly inlude the rearrangement potential,

sine the form of the ontribution of the rearrangement term to the HF loal and

non-loal potentials depends on the exat form of the interation. However, it is

known from appendix E that the rearrangement potential for the interation under

study ontributes loal and non-loal terms in just the form of the above equation

with di�erent integrands. Therefore the results that follow will hold true for a

density-dependent interation also, with suitable values of the loal and nonloal

HF potentials.

One inserts the relation (4.1) into the above HF equation (4.4):
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; (4.6)

whih is of the form of a matrix-eigenvalue equation

hC = �C; (4.7)

in whih h is the matrix whose elements are those of the HF Hamiltonian eval-

uated between the osillator basis states and C is the matrix of expansion oef-

�ients of the HF wavefuntions in terms of the harmoni osillator wavefun-

tions. The Hartree-Fok equations written in this way are also alled Roothan's

equations[71℄. The proedure desribed in Figure 4.1 is implemented then by

making an initial guess for the matrix C. This then enables one to alulate the

densities with whih the matrix h is alulated. The matrix h is diagonalised to

yield eigenvetors, C

0

and eigenvalues � . If the new set of eigenvetors C

0

equal
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the old set C then the problem is solved. In pratie, the quantity whih is heked

for onvergene is the Hartree-Fok energy.

Owing to the symmetries in (4.2), the Hamiltonian matrix h is in blok-diagonal

form with sub-matries labelled aording to the quantum numbers j, l, and �.

This is a great aid in alulation sine it requires only the diagonalisation of small

matries.

4.1.1 Calulation of densities

To evaluate the HF �eld and energy, one must obtain the spatial density. Sine

this density depends upon the HF wavefuntions, it an be represented in terms

of the harmoni osillator wavefuntions:
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assuming all the m-sub-states for eah j-shell are �lled. Note that eah single-

partile wavefuntion exhibits a (2j+ 1)-fold degeneray.

The fat that the density is represented in an analyti form is a great help

when it omes to evaluating the derivative of the density sine the derivative of

the osillator funtion is itself an analyti expression (See Appendix D).

4.2 Perturbation Corretions

The expressions for the perturbation orretions to the energy may also be simpli-

�ed due to the assumption of spherial symmetry. This redution is more involved

than for the densities and is presented in Appendix F .It is the expressions derived

in that Appendix whih are diretly omputed and presented in Chapter 7.

4.3 Convergene in basis expansion

If the HF wavefuntions were expanded in an in�nite basis then solving the matrix

equation would be exatly equivalent to solving the Shr �odinger equation. It is,
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of ourse, impossible to solve an in�nite-dimensional matrix eigenvalue problem

so the basis must be trunated at some value of prinipal quantum number {

the trunation in other quantum numbers is governed by the observed single-

partile states. It is thus neessary to understand the e�ets of suh a trunation

on the physial results of the HF problem. Related to this is the fat that the

osillator basis expansion is haraterized by a size parameter b (see Appendix D),

or equivalently its energy quantum �h!. In a �nite basis expansion the hoie of b

will a�et the results sine for one value of b the fration of the HF wavefuntions

whih overlap with osillator states outside the spae will be di�erent from that for

another value of b. The presription taken in this work is that sine a variational

priniple is at play, the parameter b is treated as an extra variational parameter.

For a given alulation, only a global b is hosen, whereas in some previous work

eah single partile state is given the osillator parameter whih produes the

largest overlap with the atual wavefuntion[67℄. The justi�ation for using a

single parameter is that the onvergene properties as a funtion of basis size

seem to be good enough so introduing more b parameters would only result in a

more ompliated alulation.

Sine it is desirable to apply this theory to all nulei, inluding those whih are

weakly bound and have extended wavefuntions, and also sine the perturbation

theory alulation involves the use of exited and ontinuum wavefuntions, on-

sideration must also be taken into aount of the extent to whih it is possible

to represent the wavefuntions of unbound single partiles, i.e. plane wave-like

states, as an expansion in terms of eigenstates of an in�nite potential, whih pro-

dued only bound states.

4.3.1 Trunation e�et in Hartree-Fok

Figures (4.2) and (4.3) show the Hartree-Fok energy for a sample parameteriza-

tion of the fore used to alulate the nuleus

40

Ca as a funtion of the osillator

size parameter, b, and the number of priniple quantum numbers, N, in the ex-

pansion. The �rst plot shows that as one adds more states, the dependene on b

beomes muh atter. This is to be expeted sine in the limit of an in�nite ex-

pansion, the set of osillator states forms a omplete set no matter what the size

parameter is. One also sees from Figs. (4.2) and (4.3) that the minimum ours at

di�erent values of b as the size of the spae is inreased. The seond �gure shows

more detail for the ases with larger N. In this plot one gets a view of the onver-

gene of the HF energy with inreasing spae size and sees the rather ompliated

struture in the dependene of the energy on b. For the larger spae sizes one

observes seondary minima whih, as one varies parameters, an take over as the

true minimum.

The onvergene of the Hartree-Fok energy as a funtion of spae size is shown

numerially in Table (4.1). The third olumn shows the pleasing result that as one

adds more and more states in the basis expansion, the hange in the HF results
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Figure 4.2: Hartree-Fok energy, E

HF

, as a funtion of osillator parameter, b, for dif-

ferent Hilbert spae sizes in

40

Ca. The rosses indiate the minima. The numbers on the

plot show the size of the prinipal quantum number spae.

beome less and less. Also shown is the onvergene of the seond order energy

orretion as a funtion of spae size. This also onverges to six signi�ant �g-

ures by the time 20 states are reahed, but as one sees from the last olumn,

the onvergene is somewhat slower than for the HF energy. This onvergene is

represented graphially in Figure 4.4.

4.3.2 Representation of ontinuum states

In HF alulations of nulei around the valley of stability the ontinuum states play

a rather small part. As one moves away from the valley of stability very weakly

bound and extended states beome oupied and need to be well represented nu-

merially for a faithful alulation. When alulating orrelations in perturbation

theory one satters partiles into highly exited states of positive energy so the

representation of these states is partiularly important for perturbation alula-

tions. These positive energy states are similar to plane waves and one would

not naturally try and expand a plane wave in an osillator basis were it not for

the bound states being well represented in the expansion. It is only neessary

for the wavefuntions to be well represented over the region of the nuleus sine
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Figure 4.3: Hartree-Fok energy as a funtion of osillator parameter and size of Hilbert

spae for

40

Ca. The rosses indiate the global minima, while the pluses indiate loal

minima in the larger spaes, whose sizes are indiated by the numbers to the right of the

lines.

the matrix elements of the potential outside disappear very rapidly thanks to the

density-dependene. In �gure 4.5 some positive energy s-states are shown in the

largest nuleus onsidered,

208

Pb, along with �tted plane wave states and the den-

sity pro�le on the same sale. As one an see all these states are well represented

over the region of the nuleus.

4.4 Parameterization

As disussed in the previous hapter, the parameters are hosen to minimized

a �

2

funtion. This proedure was partially automated through the use of

MINUIT[72℄, a minimization pakage whih is part of the CERN libraries. The

results obtained in this way were used as a guide to regions of parameter spae

where reasonable �ts may be found, whih are then obtained by hand.

Sine it is assumed that the bulk of the binding energy omes from the HF

mean �eld, and to ensure alulation in a reasonable time, the parameters are

�tted �rst in the HF approximation. The alulation of the orrelation e�ets then
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Size of spae, N E

HF

[MeV℄ jE

HF

N

- E

HF

N-2

j=E

HF

N

E

(2)

[MeV℄ jE

(2)

N

- E

(2)

N-2

j=E

(2)

N

2 -327.833 { -0.80203 {

4 -334.318 0.019430 -0.98778 0.188047

6 -335.990 0.004976 -1.02875 0.039825

8 -336.230 0.000713 -1.03501 0.006917

10 -336.286 0.000166 -1.03683 0.001755

12 -336.300 0.000041 -1.03691 0.000077

14 -336.304 0.000011 -1.03704 0.000125

16 -336.305 0.000002 -1.03702 0.000019

18 -336.305 0.000000 -1.03701 0.000008

20 -336.305 0.000000 -1.03701 0.000000

Table 4.1: Convergene of Hartree-Fok energy and seond order energy orretion as a

funtion of size of basis expansion

in priniple would require the re-�tting of the fore, but sine the perturbation

orretions to the energy are found to be smaller than deviations from experiment,

re-�tting was not important.

Details of hanges in observables as a funtion of the parameters are presented

in the next hapter, whih serves as a guide to �tting nulear properties as well as

being an exposition of the harater of the fore.

4.5 Centre-Of-Mass Corretion

The nuleus in a Hartree-Fok alulation is entred on the mean-�eld. In reality,

the nuleus is not loalised and this anomaly in the HF alulation an lead to a

signi�ant error, espeially in light nulei. Several di�erent tehniques are used

in the literature to ompensate for this error(see Appendix E of Ref. [73℄). In

this work no suh orretion is undertaken sine the philosophy of the present

tehnique would suggest that this e�et should be treated in the framework of

perturbation theory. In this �rst alulation of the present interation, only the

straightforward evaluation of the lowest order vauum amplitude diagrams is un-

dertaken.
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Figure 4.4: Seond order energy orretion as a funtion of number of prinipal quantum

numbers, N, in basis expansion, for

40

Ca.
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Figure 4.5: Positive energy single partile s-states in

208

Pb up to the 20

th

s-state (N = 19)

for a alulation with 20 radial states per angular momentum state.



Chapter 5

Nulear Fore: Results

This hapter shows results of HF and perturbation theory alulations for a typial

set of parameters for some quantities of interest. Is does not show a omprehen-

sive set of observables for all the nulei under onsideration with a omparison to

data { that is the domain of hapter 7. Here the numerial properties of the fore

are examined in the region of parameter spae, as explored during the proess of

�tting to �nite nulei, whih produes a reasonable �t to give an overview of the

harater of the fore in a quantitative way and as an aid to using the fore and

hoosing and varying parameters.

5.1 Monopole Interation

5.1.1 Contributions to the HF Energy

The Hartree{Fok Energy is (see Appendix E):

E

HF

= T+ E

oul

+

X

�=a;r
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: (5.1)

The terms in (5.1) are labelled for disussion, term by term in the order of ap-

pearane, as the kineti energy, Coulomb (whih onsists of a diret and exhange

term), diret (attrative and repulsive), exhange (att. and rep.), iso-diret (att.

and rep.), iso-exhange (whih splits into iso-exhange-a and iso-exhange-b, both

with attrative and repulsive parts), derivative diret, derivative exhange and

spin-orbit.

Figure 5.1 shows the ontribution to the Hartree-Fok energy per partile, �,

from the various terms of the attrativemonopole fore and Figure 5.2 shows the

33
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Figure 5.1: Contributions to the HF energy, �, from the \attrative" parts of the

monopole potential

analogous ontributions from the repulsive terms. Note the sales are suh that

the zero does not appear on every frame. The numbers for these two �gures are

ombined in Figure 5.3 to show the total ontribution, attrative plus repulsive,

from the various omponents of the monopole fore. In this, as in all �gures whih

show a quantity as a funtion of A, the data points are for the nulei mentioned

in Chapter 3. In partiular, there are two nulei with A = 48 in eah plot, so a

sudden jump at A = 48, in those plots in whih it ours, is just a reetion of this.

There are several points to note. Firstly, the attrative parts of the fore are

always larger in magnitude than the repulsive parts, and follow the same A-

dependene. The �rst part of this statement learly must be true if the fore

is to be binding. The fat that the A-dependene is the same, i.e. the peaks and

hanges of diretion appear in the urve in just the same plaes for both the at-

trative and repulsive terms, means that the sum of the two also has the same

A-dependene.

The isospin-dependent diret interation has a vanishing ontribution to the

N = Z nulei as it must sine it depends on the isovetor density Æ� = �

p

-�

n

. The
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Figure 5.2: Contributions to the HF energy, �, from the \repulsive" parts of the

monopole potential

ontributions to the total energy from this term are muh smaller than from the

isospin-independent term partly due to the small isovetor density, and also due

to the fat the b parameters are usually �tted to be < 1. The exhange parts of the

isospin-dependent fore, on the other hand, do ontribute to all nulei and are

on the same sale as the isospin-independent exhange sine they depend on the

same densitymatries. The exhange terms are also notable for their smoothness {

both the isospin -dependent and -independent terms have smooth A-dependene

whih approahes zero as A inreases. In the next hapter it is shown that the

exhange energy is zero in nulear matter.

The ontributions from the other terms in the potential are shown in Figure

5.4. The most signi�ant ontribution here is from the Coulomb term, about

whih there is little to say sine it is a well known fore with parameters not

open for �tting. One an see the trend of inreasing ontribution to the energy

per partile as A inreases, with downward lines in the isotopi hains of alium,

nikel, zironium and tin, as one would expet. In the exhange term one also

sees the isotopi hains learly forming straight lines. The derivative term has
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Figure 5.3: Sum of ontributions to the HF energy, �, from the attrative and repulsive

parts of the monopole interation.

only the diret term alulated sine the exhange term is rather too ompliated.

The sign of the parameter neessary to give orret single partile properties leads

to a positive ontribution to the Hartree-Fok energy, whih is quite small, but

not insigni�ant. The spin-orbit fore is nearly zero for those nulei in whih the

spin-orbit-split pairs are all fully oupied. The deviation from zero is due to the

fat that the wavefuntions in the states of di�erent j are not quite the same.

For those nulei whih are not spin-orbit saturated there is a general trend of

dereasing ontribution with higher A, indiative of the fat that the fore only

ontributes to the binding from a few states near the Fermi surfae. The magni-

tude of the ontribution is rather small and is �xed not by the binding energy, but

to the spin-orbit splitting of the single partile energies.

5.1.2 Variation of monopole fore parameters

Starting from a set of parameters used in the previous setion, whih is the result

of a typial �t to the data, one may onsider the at of singly varying any of the
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Figure 5.4: Contributions to the HF energy, �, from the Coulomb, gradient and spin-

orbit terms.

parameters to examine the e�et of eah of them separately. Having observed

that the attrative and repulsive fores give aneling ontributions whih have

the same A-dependene, it suÆes to look at varying the attrative parameters

alone, sine varying the repulsive parameters will just give the same results with

opposite sign.

�

a

and �

r

The � parameters enter the HF energy through the f funtions (see Equation (3.2))

whih appear in all the terms of themonopole fore, exept for the derivative term.

In the HF potential, as well as through the f parameters, there are terms whose

x-dependene is spei�ally �-dependent.

Taking a small inrease in �

a

, from 2:0 to 2:01 one sees a slight inrease in

the parameter f

�

a

so from the ation of this quantity alone one would expet an

inrease in the HF energy due to the strengthening of the attrative fore and a

deepening of the HF potential. On the other hand, the terms in the potential
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Figure 5.5: Ation of the variation of �

a

upon various ontributions to the HF potential,

U(x), in light and heavy nulei (

40

Ca and

208

Pb). The di�erent ontributions to the HF

potential shown in the four frames are explained in the text.

whose x-dependene depends on �

a

has an extra fator of f

�

and is repulsive so

ought to ounterat the e�et of the general strengthening of the attrative term.

The e�et of varying �

a

upon the expliitly �-dependent terns in the HF potential

is shown in Figure 5.5. The �rst frame shows the terms in the isospin-independent

part of the HF potential expliitly dependent on �

a

for

40

Ca and

208

Pb. The large

ontribution is from the diret rearrangement term. The very small ontribution

near the x-axis is that from the exhange rearrangement term (that term whih

features the funtion G(x) in Equation (3.9)). The seond frame shows terms anal-

ogous to those in frame one, but for the repulsive fore. Here one sees that a

fairly signi�ant hange arises despite the lak of any dependene in �

a

. The dif-

ferenes then must be due to the hange in density whih arises. The third frame

shows the sum of the �rst two and the full HF potential (for neutrons) is shown

in the �nal frame. Although the expliitly �-dependent terms show a redution

in binding, the overall hange in the density and the e�ets of the hange in the
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Figure 5.6: A-dependene of the binding energy per nuleon, -�, for various values of

�

a

, and the hange in � per unit hange in �

a

as a funtion of A.

other parameters gives a net result of a deepened HF potential with a orrespond-

ing inrease in binding energy and derease in radius. The numerial hanges are

shown in Table 5.1 in whih it is interesting to note that hanging �

a

hanged f

�

a

rather less than other of the parameters in the potential.

Figure 5.6 shows how the A-dependene of the binding energy per partile, �,

hanges as a result of varying �

a

. As has been noted, an inrease in �

a

inreases

Quantity E

HF

(MeV) r

h

(fm) f

�

a

N

�

a

f

�

r

N

�

r

Valuej

�

a

=2:00

-345.2 3.48 0.238 4.198 0.420 2.332

Valuej

�

a

=2:01

-413.1 3.43 0.233 4.385 0.398 2.465

Perentage hange 19.7 1.4 2.1 4.5 5.2 5.7

Table 5.1: E�et of a small hange in �

a

upon observables and parameters of the mean

�eld for

40

Ca.
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the binding energy and this is seen, in the left frame, to our aross the whole

range of nulei. The right frame shows the hange of binding energy per nuleon

per unit hange in �

a

as a funtion of A. Here one notes that heavier nulei are

a�eted more strongly than light nulei with about a 20% di�erene in strength.

The dependene is quite smooth, with a small amount of shell struture in evi-

dene. The sale of the y-axis shows that very large hanges in the binding energy

(and, in fat, in all other observables) result from small hanges in �

a

whih is not

surprising sine �

a

features as an exponent in the expression for the fore (3.1).

�

a

and �

r

Like the � parameters, the � parameters enter into eah of the terms of the

monopole fore via their own funtions, in this ase the N funtions (see Equation

(3.9)). The form of these funtions looks like a reiproal of the f funtions and

one �nds that an inrease in a � results in a derease in the orresponding N

�

.

The \leading" term of the HF potential, i.e. the Hartree term whih is not part

of the rearrangement potential has an x-dependene whih is itself dependent on

the �

a

parameter. This term, for a small hange in �

a

is shown in the �rst frame of

Figure 5.7, added to the funtionally idential term from the rearrangement po-

tential and the tiny part of the potential whih arises from the exhange term but

has the form of a loal one-body potential (that part whih features the funtion

G(x)). The seond frame again shows the orresponding ation upon the same

terms for the repulsive part of the fore and the two parts are added together for

frame 3. Frame 4 shows the e�et of a small inrease in �

a

for the HF potential.

As with the variation of �

a

one onludes that the dominant e�et of hanging the

parameter is not diretly through the parts of the fore whih expliitly depend on

it, but rather through the hange in the density. Inreasing �

a

has the nett e�et

of dereasing the depth of the HF potential and inreasing the rms radius of the

density distribution.

The hange in the A-dependene resulting from varying �

a

is shown in Figure

5.8. The left frame gives a visual guide to the e�et on the binding energy over

the periodi table as �

a

is varied. The obvious e�et is seen to be a shifting of

the energies en masse. The variation of this e�et with A is shown in the seond

frame. The urve's shape resembles that of its analogue in the variation of �

a

exept for a hange in sign. This suggests that the � and � parameters are not

independent. In the next hapter the nulear matter problem is studied in whih

it an be seen that in the limit of in�nite nulear matter the two parameters are

indeed orrelated.

Potential Strengths, W

a

and W

r

The meaning of and the e�et of hanging the potential strengths are quite lear

{ they ontrol the overall strength of the interation and the extent to whih they
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Figure 5.7: Ation of the variation of �

a

upon the HF potential in light and heavy nulei

(

40

Ca and

208

Pb). The di�erent ontributions to the HF potential shown in the four frames

are explained in the text.

anel eah other out.

Just varying W

a

varies the depth of the potential and the HF energy in an

obvious way. A more interesting way to examine the potential strengths is to

vary them both while keeping an observable onstant. Table 5.2 shows the e�et

W

a

W

r

r

h

(fm) E

(2)

-1320.0 1431.3 3.32 -1.19

-1420.0 1605.8 3.40 -1.09

-1520.0 1785.0 3.48 -1.01

-1620.0 1986.9 3.56 -0.95

-1720.0 2157.3 3.64 -0.90

Table 5.2: Charge radius and seond order energy orretion in

40

Ca as attrative and

repulsive potential strengths are varied at onstant Hartree-Fok energy
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as a funtion of A.

of varying W

a

and W

r

suh that the binding energy of

40

Ca is kept �xed (at 345:2

MeV). One sees that there is a linear dependene upon the potential strengths

of the harge radius so that one may �t both the energy and the harge radius

simultaneously for at least one nuleus with �xed values of the exponents � and

�.

The � 30% hange in the seond order energy orretion shows that the amount

of total energy whih omes from the orrelation depends on how one hooses the

parameters. Clearly in this ase one must hoose the set of parameters whih �ts

the harge radius, but the hanges in the seond order orretion show that one

may inlude as a �tting riterion the orrelation energy.

Figure 5.9 shows how the binding energies of the other nulei hange between

the most extreme values of the potential strengths in Table 5.2. The top two lines

show the two urves of E=A as labelled by the left y-axis. Clearly there is only a

slight di�erene between the two urves. The lower urve shows this di�erene

and is labelled by the right y-axis. It an be seen that this urve of the di�erenes
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r

on the binding energy of a range of nulei,

keeping that of

40
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mirrors the upper urves. This indiates that inreasing the magnitudes of the

potential strengths serves to atten out the shell struture somewhat.

Isospin parameters, a

a

, b

a

, a

r

, b

r

From Figures 5.1-5.3 the diret isospin-dependent energy is seen to depend

strongly on the di�erene N - Z with the largest ontribution oming from the

nulei

78

Ni,

132

Sn and

208

Pb, those being the nulei with the greatest neutron ex-

esses. In Figure 5.10 one sees the result upon the total binding energy per nu-

leon of varying the b parameter for the attrative fore. It is seen that there is a

large variation the the ontribution to the HF energy from the b-dependent terms.

For a positive value of the b

a

, that is to say an attrative fore in the diret part,

a large attrative ontribution is seen for the nulei mentioned above with large

neutron exess. Also of note is the exhange ontribution whih ats with opposite

sign to the diret term and results in redued binding for the light N = Z nulei

where its a�et is strongest (see Figure 5.3).

As well as a�eting the binding energy, the b parameters ontrol the relative

depths of the proton and neutron potentials and so also give one the freedom to

�t the relative single partile energies of protons and neutrons. For the values of

b

a

used in Figure 5.10 and some values in between, the single partile energies
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Figure 5.10: E�et upon the binding energy per partile of the variation of the b

a

isospin-

dependent parameter

of the few neutron and proton states either side of the Fermi level in

208

Pb are

shown in Table 5.3. One sees making the parameter b

a

more positive dereases

the binding of the proton states and inreases the binding of the neutron states.

The ation of b

r

is reversed as shown in Figures 5.1 and 5.2.

The a parameters feature only in the exhange part of the energy and potential.

Their e�et then, as shown in Figures 5.1-5.3 is largest in light nulei and smoothly

varying. Varying a

a

, as shown in Figure 5.11 reets this behaviour and gives

one the freedom to vary the A-dependene of the �t to the binding energy. An

interesting e�et of having a parameter whih ontrols a part of the fore whih

ontributes quite weakly, only via exhange parts in the HF approximation, is

that the ontribution to the perturbation alulation to the energy may be large

sine there is no alulational distintion between diret and exhange fores at

the level of perturbation theory. Figure 5.12 shows the size of the seond-order

energy orretion as a funtion of a

a

. The orretions are shown as ontributions

to the binding energy, so are positive sine the seond order orretion is always

binding. The quadrati behaviour of the energy with respet to a

a

an be seen as

ontrasted to the more linear behaviour in the HF approximation. By inreasing

the magnitude of the a parameters one an then obtain large values of orrelation

energy for moderate hanges in HF energy.

The �gure also shows the di�erene in ontributions to the N = Z and N 6= Z
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b

a

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

�0h

11=2

-11.9 -10.8 -9.5 -8.0 -6.2 -4.2 -1.4

�1d

3=2

-10.7 -9.5 -8.1 -6.6 -4.8 -2.6 +0.2

�2s

�

1=2

-10.1 -8.9 -7.6 -6.1 -4.3 -2.2 +0.6

�0h

9=2

-6.7 -5.6 -4.2 -2.6 -0.7 +1.6 +4.2

�1f

7=2

-5.7 -4.6 -3.4 -2.0 -0.4 +1.6 +4.5

�0i

13=2

-5.0 -4.0 -2.9 -1.5 +0.0 +2.0 +4.6

�2p

3=2

-9.7 -10.7 -11.8 -13.2 -14.8 -16.8 -19.3

�1f

5=2

-9.6 -10.5 -11.6 -12.9 -14.4 -16.3 -18.8

�2p

�

1=2

-8.9 -9.8 -10.9 -12.2 -13.8 -15.7 -18.2

�1g

9=2

-5.5 -6.5 -7.6 -8.9 -10.4 -12.2 -14.6

�0i

11=2

-3.9 -4.9 -6.1 -7.4 -8.9 -10.7 -12.9

�2d

5=2

-3.1 -4.0 -5.1 -6.2 -7.8 -9.6 -11.9

Table 5.3: Proton (�) and neutron (�) single partile energies near the Fermi level in

208

Pb. The asterisks denote the highest oupied states.

nulei from the a-dependent terms. This is understandable in the following terms:

An exitation arising from this term is non-zero if a single proton is exited to a
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Figure 5.11: Dependene of the binding energy per nuleon on the parameter a

a

. Values

of a

a

range from -0:6 to 0:6 as labelled and inrement in steps of 0:2.
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Figure 5.12: Dependene of the total seond order ontribution to the binding energy

on the parameter a

a

. The parameter a

r

is kept at zero.

neutron orbital and a single neutron is exited to a proton orbital simultaneously.

Sine eah exitation is an l = 0 exitation the lowest state a given proton an

exite to is the lowest unoupied neutron state of the same l and vie versa for a

neutron exiting to a proton state. In an N = Z nuleus the proton and neutron

states are oupied to the same level so eah exitation must involve a hange in

prinipal quantum number and thus inur quite a large energy denominator. In an

N 6= Z nuleus one an have the situation in whih a neutron exites to a proton

states in whih all the (non-isospin) quantum numbers are exatly the same in

whih the matrix element is large and the energy denominator is small, giving rise

to a large ontribution.

Derivative fore parameter, k

This part of the fore ontrols rather strongly the density pro�le, partiularly at

the surfae. Without it, there is always a large peak in the densities around the

surfae of the nuleus, whih is partiularly evident in heavy nulei. Figure 5.13

shows the surfae of the harge density in

208

Pb as the k parameter is varied. As

one an see the peak is rather onsiderable if one omits this term (k = 0:0). In the

�gure, the parameter is inreased in steps of 2:0 as indiated. At some value near

6:0 the harge density �ts that of experiment quite well, and then beomes worse
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Figure 5.13: E�et of varying k on the surfae of the harge density

as the parameter is inreased. The experimental data are the Fourier transform

of the harge sattering form fator[99℄.

k [Mev fm

10

℄ N

d

E

derv

[MeV℄

0.0 -5.59 0.00

4.0 -4.72 44.63

8.0 -4.24 71.79

12.0 -3.90 91.36

16.0 -3.65 106.6

20.0 -3.45 119.2

24.0 -3.29 129.7

Table 5.4: Hartree Energy ontribution from derivative term as a funtion of term's

strength in

208

Pb

Table 5.4 shows how, as one inreases the strength of the derivative term, the

hange in the density pro�le results in a derease in the N

d

parameter, whih is

de�ned in expression (E.24) of Appendix E, so that, despite the term being pro-

portional to the parameter k, the inrease in energy is less than linear. The other

signi�ant e�et of the derivative terms is related to hange in the surfae prop-

erties as shown in Figure 5.13. Sine the shape of the HF potential is diretly

dependent upon the shape of the density, the rounding of the surfae of the den-
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Figure 5.14: E�et of varying k upon the neutron single partiles energies near the fermi

surfae in lead.

sity also smooths out the wall of the potential. The result of this is that those

high angular momentum states whih spend most of their time near this surfae

su�er a loss in binding. This is shown in Figure 5.14 for neutron states near the

fermi surfae in

208

Pb. When k = 0 the N = 126 shell gap is not pronouned, but

as k inreases the i

11=2

state moves up as the rest move down and the resulting

shell gap is inreased. Table 5.5 shows the numerial size of the gap between the

highest oupied and lowest unoupied neutron states in

208

Pb as shown in Figure

5.14.

k [Mev fm

10

Gap [Mev℄

0.0 2.10

4.0 3.44

8.0 3.43

12.0 3.39

16.0 3.39

20.0 3.40

24.0 3.49

Table 5.5: N = 126 shell gap in

208

Pb as a funtion of k. Experimental value is 4.23

MeV[21℄
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Figure 5.15: Proton single-partile level spetrum of

48

Ca as spin-orbit paramter,  is

varied.

The reason that the single partile energies beome more bound as k inreases,

even though the ontribution to the Hartree-Fok energy of this term is positive is

that the parameter N

d

as shown in Table 5.4 is negative and appears with a single

power in the mean-�eld, but squared in the HF energy.

Spin-orbit parameter, 

Figure 5.15 shows the variation of the proton single partile energies up to Z = 40

as a funtion of the spin-orbit strength, . One sees that as the parameter is

 [Mev fm

5

℄ r

h

[fm℄ E

so

0.0 3.50 0.00

50.0 3.49 -8.14

100.0 3.47 -17.34

150.0 3.44 -27.91

200.0 3.44 -40.43

250.0 3.43 -56.18

Table 5.6: Charge radius and ontribution to HF energy from spin-orbit fore as  is

varied in

48

Ca.
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inreased the magi number 28 appears and upon further inreasing the magi

number 20 disappears. The orret value of the parameter is presumably around

150 Mev fm

5

where both magi numbers exist. The fat that the 0f

5=2

and 0f

7=2

states do not oinide in energy at  = 0 is due to the exhange part of the isospin-

dependent fore. The last term in the nonloal HF potential (3.10) is, for protons

U

p

(x; x

0

)'

b

(x) = -

X

�

W

�

a

�

f

�

�

�

n

(x; x

0

)�

�

�

(x)�

�

�

(x

0

)'

b

(x

0

) (5.2)

whih gives a di�erent ontribution aording to whether the state whih orre-

sponds to the proton state '

b

is present in the neutron density �

n

(x; x

0

) or not.

Sine the 0f

7=2

neutron state is oupied but the 0f

5=2

state is not, these two uno-

upied proton states see a spin-orbit splitting even without the spin-orbit fore.

5.2 Higher Multipole fores

The higher multipole fores do not ontribute to the diret HF energy in spherial

doubly-losed-shell nulei (See Appendix E). There is an exhange ontribution to

the energy of the form:

E

�;q

1

;q

2

= -

f

�

2

W

�;q

1

;q

2

X

i;j<�

F

�

X

M=-�

(-1)

M

hijj(r

�

1

(r

1

)�(r

1

)Y

�M

(r̂

1

)) (r

�

2

�(r

2

)Y

�-M

(r̂

2

))jjii

(5.3)

Sine the exhange part of the interation is presumably small by analogy with the

monopole �eld, its ontribution to the HF �eld is negleted. The ontribution to

the HF energy is alulated, as well as the ontribution to perturbation theory.

It is diÆult to show the behaviour of the multipole fores for a typial set of

parameters sine the observables of the ground states of spherial nulei do pro-

vide enough information to give de�nite values to these parameters. Although

alulations of exited states or deformed nulei will be neessary to �t these pa-

rameters, there will be a ontribution to spherial nulei via the exhange term

in the Hartree-Fok approximation and in perturbation theory, so these possible

ontributions are examined here.

TheA-dependenes of the higher multipole fores are ontrolled by parameters

f

�

so it is not worthwhile to examine suh dependene sine it an be set freely.

Instead, the results of varying the three strength parameters for the quadrupole

fore are examined in the N = Z nuleus

40

Ca and the N 6= Z nuleus

48

Ca whih

are lose enough in mass that the unertainty in the A-dependene is irrelevant.

The funtion f

Q

is hosen to be

f

Q

=

1

A

7=3

(5.4)

sine this is the value used in Ref. [74℄. This value is ertainly not to be taken

as �xed, but only as a hoie made sine some de�niteness is neessary for this
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study. The atual A-dependene of the fore may need to be quite di�erent sine

this density-dependent fore used in the full spae may be quite di�erent from

the traditional density-independent quadrupole fores used in a restrited spae.

Negative signs are hosen for the strengths sine the quadrupole fore is usually

onsidered to be attrative. In the ase of the spherial nulei in whih the largest

ontribution is from the HF exhange term, the e�et is atually to lower the

binding energy.

The results for the ontribution to the HF exhange energy as a funtion of the

strength parameters are shown in Table 5.7. In the ase of

40

Ca the results for

the pp and the nn fore are almost the same, whih is to be expeted sine their

wavefuntions and relative single-partile spaing are almost idential. The HF

energy ontribution to the pn fore is very lose to that of the pp and nn fores, but

the perturbation alulation is notieably di�erent. This is due to the fat that the

proton and neutron states are shifted with respet to eah other as a result of the

Coulomb interation so that the energy exitations from proton to neutron states

and vie versa inur di�erent energy denominators to those exitations whih are

between single partile states of the same isospin. In the ase of

48

Ca the e�et

of the A-dependene is seen to redue the strength of the pp interation for a

given W paramter. The addition of eight neutrons to the f7

2

state results in quite

a substantial inrease in the ontribution from the nn fore, whih shows that the

quadrupole fore has a large shell-dependene. Again, the pn fore has a rather

larger e�et in perturbation theory than either the pp or nn fores.

The linear behaviour of the HF exhange energy is evident. This exat linearity

is as a result of the approximation used, whih neglets the e�et upon the mean

�eld due to the multipole fores. The extra ontribution to the seond order or-

retion is seen to be quadrati in the strength parameter. This is a natural result

of perturbation theory whih orders terms by the number of interations taking

plae. In seond order, there is a squared matrix element proportional toW

2

Q

. The

quadrati behaviour is not exat sine the quadrupole term anels and augments

the monopole term (and the dipole term, when used) as shown in Appendix F.
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40

Ca

W

Q;pp

[MeV℄ 0.0 -100 -500 -1000 -5000 -10000 -50000

E

(Q)

[MeV℄ 0.0 0.051 0.254 0.508 2.359 5.078 25.393

E

(2)

[MeV℄ -1.268 -1.268 -1.268 -1.269 -1.288 -1.348 -3.261

E

(Q)

(2)

- E

(0)

(2)

[MeV℄ 0.0 0.0 0.0 0.001 0.020 0.080 1.993

W

Q;nn

[MeV℄ 0.0 -100 -500 -1000 -5000 -10000 -50000

E

(Q)

[MeV℄ 0.0 0.052 0.258 0.517 2.584 5.169 25.843

E

(2)

[MeV℄ -1.268 -1.268 -1.268 -1.269 -1.287 -1.347 -3.237

E

(Q)

(2)

- E

(0)

(2)

[MeV℄ 0.0 0.0 0.0 0.001 0.019 0.079 1.969

W

Q;pn

[MeV℄ 0.0 -100 -500 -1000 -5000 -10000 -50000

E

(Q)

[MeV℄ 0.0 0.052 0.257 0.515 2.573 5.147 25.733

E

(2)

[MeV℄ -1.268 -1.268 -1.269 -1.271 -1.347 -1.584 9.132

E

(Q)

(2)

- E

(0)

(2)

[MeV℄ 0.0 0.0 0.001 0.003 0.0079 0.0316 7.864

48

Ca

W

Q;pp

[MeV℄ 0.0 -100 -500 -1000 -5000 -10000 -50000

E

(Q)

[MeV℄ 0.0 0.047 0.238 0.476 2.380 4.759 23.795

E

(2)

[MeV℄ -3.149 -3.149 -3.149 -3.149 -3.165 -3.214 -4.778

E

(Q)

(2)

- E

(0)

(2)

[MeV℄ 0.0 0.0 0.0 0.0 0.016 0.065 1.629

W

Q;nn

[MeV℄ 0.0 -100 -500 -1000 -5000 -10000 -50000

E

(Q)

[MeV℄ 0.0 0.083 0.415 0.830 4.149 8.297 41.485

E

(2)

[MeV℄ -3.149 -3.149 -3.149 -3.150 -3.175 -3.254 -5.795

E

(Q)

(2)

- E

(0)

(2)

[MeV℄ 0.0 0.0 0.0 0.001 0.026 0.106 2.646

W

Q;pn

[MeV℄ 0.0 -100 -500 -1000 -5000 -10000 -50000

E

(Q)

[MeV℄ 0.0 0.054 0.271 0.542 2.711 5.421 27.107

E

(2)

[MeV℄ -3.149 -3.149 -3.151 -3.155 -3.251 -3.535 -12.346

E

(Q)

(2)

- E

(0)

(2)

[MeV℄ 0.0 0.0 0.002 0.006 0.102 0.386 9.197

Table 5.7: Contribution from the quadrupole fore to the HF exhange energy (E

(Q)

). E

(2)

is the total seond order orretion and E

(Q)

(2)

-E

(0)

(2)

is the hange in seond order orretion

due to the quadrupole fore.



Chapter 6

Nulear Matter and Neutron Star

Calulations

The purpose of nulear struture theory is to desribe the properties of observed

nulei given some kind of nulear interation or potential as input. The diÆulties

of performing full alulations and the desire to examine the properties of many

andidate interations have led to in�nite nulear matter alulations beoming a

standard tehnique in examining the properties of nulear potentials.

In its simplest form, in�nite nulear matter onsists of an equal (and in�nite)

number of protons and neutrons interating via a nulear potential but with the

Coulomb interation \swithed o�". One may then alulate its binding energy per

nuleon as a funtion of the nulear density. Theminimum point of this urve gives

the equilibrium density and energy. The existene of the minimum at the orret

energy and density is a neessary result whih is a reetion of the saturation of

nulear fores.

The observables in nulear matter are identi�ed in a number of ways. The den-

sity is inferred from the entral densities of heavy nulei and is reasonably ertain

sine there is not muh variation in this value between nulei (saturation of the

density). For energies one onsiders terms in the simple semi-empirial mass for-

mula of Weizs�aker-Bethe [76℄ whih have the orret A-dependene to be �nite

in nulear matter, namely the volume and asymmetry terms. Other observables

are onsidered below.

More detailed desriptions of nulear matter are widely available in textbooks

on nulear physis and many-body physis (see e.g. [34, 36, 37℄) and in review

artiles (see e.g. [75℄).

53
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6.1 Symmetri Nulear Matter

6.1.1 Single partile wavefuntions

Sine in�nite nulear matter is in�nite and homogeneous, the single partile wave

funtions must be translationally invariant, hene they are plane waves states.

Nulei also have intrinsi spin and isospin so eah single partile state also has a

spinor and isospinor assoiated with it:

�

�

(r) =

1

p

V

e

ik

�

�r

�

�

�

�

(6.1)

where �

�

is a spinor and �

�

is an isospinor.

6.1.2 Density

In nulear matter theory, the system is a Fermi liquid, onsisting of independent

partiles oupying states up to the Fermi level. In this piture we may write the

number of partiles as

A =

X

k��

�(k

F

- k) (6.2)

where �(x) is the step funtion:

�(x) =

�

1 x > 0

0 x < 0

: (6.3)

As the size of the system inreases to in�nity the sum over momentum states

beomes an integral and the expression for the number of partiles beomes

A =

V

(2�)

3

X

��

Z

d

3

k �(k

F

- k)

+

4V

(2�)

3

4�

Z

k

F

0

k

2

Z

dk

=

2V

3�

2

k

3

F

: (6.4)

Dividing by the volume, the density � = A=V is

� =

2k

3

F

3�

2

: (6.5)
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6.1.3 Kineti Energy

The kineti energy of a many-partile systemmay be written as the sum of the sin-

gle partile kineti energies, T =

P

i

hij

^

Tjii whih, in the ase of the single partile

states de�ned in Equation (6.1), is:

T =

X

k��

1

V

Z

d

3

r e

-ik�r

�

y

�

�

y

�

 

-

�hr

2

2m

!

e

ik�r

�

�

�

�

; (6.6)

where �

�

is a spinor and �

�

is an isospinor. Sine the kineti energy operator

does not at in the spin or isospin spaes, the produts of the spinors and their

hermitian onjugates is unity. The ation of the Laplaian on the exponential is

just r

2

e

ik�r

= -k

2

e

ik�r

so that

T =

X

k��

�h

2

2m

k

2

= 4

V

(2�)

3

�h

2

2m

4�

Z

k

F

0

k

4

dk

=

V�h

2

k

5

F

5�

2

m

=

 

2k

3

F

3�

2

!

V

3

5

�h

2

k

2

F

2m

= A

3

5

�h

2

k

2

F

2m

: (6.7)

Hene

T

A

=

3

5

�h

2

k

2

F

2m

(6.8)

whih is the kineti energy per partile. Using the relation between k

F

and � (6.5),

the kineti energy per partile may also be expressed as

T

A

=

3

5

�h

2

2m

 

3�

2

2

!

2

3

�

2

3

: (6.9)

In nulear units, and taking the mass to be the average of the neutron and proton

masses, m � 938:8 MeV, the kineti energy per partile is approximately

T

A

= a

k

�

2

3

� 75:0�

2

3

MeV (6.10)

6.1.4 Potential Energy

The total potential energy due to a two-body interation in a many body system

may be expressed as

V =

1

2

X

��

(h��jV(1; 2)j��i- h��jV(1; 2)j��i) = E

D

- E

E

(6.11)
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where � and � eah represent all the quantum numbers of the individual partiles

and the sums run over all oupied states. E

D

is alled the diret term, and E

E

the exhange term. Considering �rst the diret term, with the entral part of the

two-body interation ating between the plane wave states, the energy is

E

D

=

X
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(6.12)

Using the fat that in in�nite nulear matter, the density is a onstant, the fun-

tions �, may be taken outside of the integrals:

E

D

=

X
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(6.13)

so that the ontribution to the energy, per nuleon, is

E
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: (6.14)

The exhange term, E

�

is
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Again taking � to be onstant, the integral just gives a delta funtion:
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and the energy per nuleon, E

�

=A! 0 as A!1. Note that this is in aord with

the results presented in hapter 5 for the exhange ontribution to the HF energy

where the ontributions are seen to beome smaller as A is inreased.

6.2 Asymmetri nulear matter

In asymmetri nulear matter the proton and neutron densities are not equal. The

asymmetry is haraterized by the quantity I, de�ned as

I =

N- Z

A

(6.17)

6.2.1 Density

The proton and neutron densities are de�ned in terms of the I parameter as

�

p

= -

1

2

(I- 1)� =

1

2

(1- I)� (6.18)

�

n

=

1

2

(1+ I)�: (6.19)

In addition, the relation (6.5) between density and Fermi momentum may be

derived for the ase of a proton and a neutron Fermi momentum:

�

n

=

k

3

F(n)

3�

2

(6.20)

�

n

=

k

3

F(p)

3�

2

: (6.21)

Note that these expressions di�er from Equation (6.5) eah by a fator of two sine

there is not a sum over the isospin.
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6.2.2 Kineti Energy

Now the kineti energy is the sum of proton and neutron kineti energies:
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and the kineti energy per partile is
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whih is expressed in terms of the I parameter as
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6.2.3 Potential Energy

The zero result for the exhange term in the ase of symmetri nulear matter was

due to the exhange of the spae oordinates. The harater of the spae part in the

isospin-dependent term is exatly the same and the result is similarly zero. In ad-

dition, then, to the isospin-independent parts of the monopole interation, there

is an additional diret ontribution from the \b"-terms of the isospin-dependent

part of the fore. The energy due to this term is
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In the ase where �
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and in the ase �

�

6= �

�

the ombined ation of the isospin operators gives a neg-

ative sign:
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Then the total energy due to the isospin-dependent term is

E

D

=

X

�=a;r

1

2

W

�

b

�

�

2�

�

-�

�

V (�

p

- �
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)

2

(6.28)

and the energy per partile is

E

D

=A =

X

�=a;r

1

2

W

�

b

�

�

2�

�

-�

�

-1

(�

p

- �

n

)

2

: (6.29)
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The energy per partile of asymmetri nulear matter, in terms of the total density

and the asymmetry parameter I is:

�(�; I) = 

p

1

2

5=3

(1- I)
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2=3
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n

1
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(6.30)

6.3 Observables

6.3.1 Symmetri nulear matter

As a funtion of the density, the energy per partile in nulear matter for a physial

system has a minimum at the saturation density (�

0

) with a value �

0

. The observed

value of � = E=A at saturation density is determined from the liquid drop model

to �ts of a large number of �nite nulei and is taken to be[22℄

E

0

= -16:0 � 0:2 MeV: (6.31)

One may expand the funtion � = E=A about this minimum point:

�(�) = �j
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For the state of density � to be a minimum the �rst derivative must be zero. The

physial parameter proportional to the �rst derivative is the pressure

P = -

��

�v

= �

2

��

��

(6.33)

where v = 1=� is the volume per partile. The expression for the pressure in

symmetri nulei is

P =

2

3

a

k

�

5=3
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(2�
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: (6.34)

The quadrati term in the Taylor expansion is identi�ed as the inompressibility,

K,

K = 9�

2

�

2

�

��

2

�

�

�

�

�

�

0

: (6.35)

K is a measure of the energy needed to produe a density hange in the nulear

matter. Its value is not well known, but is inferred from those exitation in �nite
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nulei whih orrespond to density utuations (the breathing mode) to be 210�20

MeV[85℄. A generalized K(�) may be de�ned for non-equilibrium densities [22℄:

K = 9�

2

�

2

�

��

2

+ 18

P

�

(6.36)

where P is the pressure as de�ned above. Evaluated for the fore in this thesis,

the generalised inompressibility is

K = -2a
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: (6.37)

6.3.2 Asymmetri nulear matter

Aside from the leading term in the Bethe-Weizs�aker mass formula, the asymmetry

term also has an A-dependene suh that it should be �nite in asymmetri nulear

matter. Its form is

�j

asym

= a

s

(N- Z)

2

A

2

(6.38)

and the parameter a

s

, like the leading term E

0

above is �tted to a large number of

observed binding energies. This oeÆient is identi�ed in the expression (6.30) as

a

s

=

1

2

�

2

�

�I

2

: (6.39)

Typial values for this parameter range from 18:6 Mev [77℄, to 23:7 MeV [78℄,

to 33 MeV [79℄, the last value being the most reent. For the present ase, the

separable interation gives for a

s

:

a

s

=

5

36



p

�

2=3

(1- I)

1=3

+

5

36



n

�

2=3

(1+ I)

1=3

+

1

2

W

a

b

a

�

2�

a

-�

a

+1

+

1

2

W

r

b

r

�

2�

r

-�

r

+1

: (6.40)

At I = 0 this expression beomes
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In addition one may onsider the equation of state for pure neutron matter

(I = 1). Although no observables as suh are known, due to the fat that neutron

matter is not bound by nulear fores, this very fat may be used as a ondition, i.e.

neutron matter should not be predited to be bound by the model. The binding

energy of neutron matter is given from Equation 6.30 with I = 1 and � = �

n

:
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n
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(6.42)
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6.4 Results

Results are presented for the parameter set used to �t �nite nulei. This values of

the parameters are given at the beginning of the next hapter.

The urves of energy per partile in symmetri nulear matter (SNM) and Pure

Neutron Matter (PNM) are shown in Figure 6.1. The equilibrium point for sym-

metri nulear matter ours at �

0

= 0:155 fm

-3

with an energy per nuleon of

-15:56MeV. This ompares favourably with the inferred experimental[22℄ values

of -16:0 � 0:2 MeV at a saturation density of �

0

= 0:16 � 0:005 fm

-3

, espeially

when one onsiders that the fore parameters used were �tted to �nite nulei.

In addition, di�erent mass formula �ts to the data give slightly di�erent \exper-

imental" results for nulear matter properties, so, for instane, a reent paper of

Heiselberg[86℄ gives �

0

= -15:6� 0:2MeV and they onsider the value of the sat-

uration to be more unertain, at �

0

= 0:16� 0:02 fm

-3

. The urve for PNM shows

the result that neutron matter is unbound at any density and everywhere less sta-

ble than symmetri matter, as it should be. This is in ontrast to most Skyrme

interations �tted to �nite nulei whih have PNM more stable than SNM above

a threshold density whih may be quite low (� 0:4 fm

-3

in the ase of the fore

parameterisation SIII[22℄).

0 0.1 0.2 0.3 0.4

ρ [fm
−3

]

−20

−10

0

10

20

30

40

η 
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eV
]
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Figure 6.1: Energy per partile in Symmetri Nulear Matter (SNM) and Pure Neutron

Matter (PNM). The saturation density is �

0

= 0:155 fm

-3

and the energy per nuleon at

saturation is -15:56 MeV.
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Fore Separable SIII[80℄ SGII[81℄ SkM

�

[82℄ SkP[83℄ T6[84℄ SLy230a[22℄

�

0

0.155 0.145 0.158 0.160 0.162 0.161 0.160

k

F

1.319 1.291 1.328 1.333 1.340 1.355 1.133

r

0

1.155 1.180 1.147 1.143 1.137 1.141 1.143

�

0

-15.56 -15.85 -15.59 -15.77 -15.95 -15.96 -15.97

K

1

218.2 355.4 214.6 216.6 201.0 135.9 229.9

m

�

1

=m 1.0 0.76 0.79 0.79 1.0 1.0 0.695

a

s

36.90 28.16 26.83 30.03 30.00 29.97 32.01

Table 6.1: Properties of in�nite nulear matter at equilibrium for the separable inter-

ation used in this thesis as well as some typial Skyrme interations. The observables

are the equilibrium density, �

0

[fm

-3

℄, the Fermi momentum, k

F

[fm

-1

℄, r

0

= (9�)

1=3

=2k

f

[fm℄ is the mean distane between two nuleons in the uid, �

0

[MeV℄ is the energy at

saturation density, K

1

[MeV℄ is the inompressibility, m

�

=m is the e�etive mass and a

s

[MeV℄ is the asymmetry energy.

A omparison of various observables between the seletion of Skyrme fores

used in the paper of Chabanat et. al.[22℄ and the separable fore of this thesis

is presented in Table 6.1. The �rst �ve Skyrme parameterisations listed were

hosen to be a representative sample and the �nal one, SLy230a was the result of

�tting to neutron-rih neutron matter and neutron star properties. Most of the

observables ompare favourably with those of the best Skyrme parameterization

listed, SLy230a. The asymmetry parameter is perhaps too high, but it is loser to

the value of that for SLy230a than the other listed parameterisations.

6.5 Neutron Star

One possible result of the ollapse of a normal star at the end of its life is the

formation of neutron star. Radio pulsars suh as the objet in the remnant of

the Crab supernova are believed to be suh stars whih begin their life rotating

rapidly but slow down rather quikly due to their high magneti �elds. The sup-

posed struture of a neutron star is shown shematially in Figure 6.2. It is from

the equations of state (EoS) of the realisti interations that this piture is inferred

and although the detailed results di�er as one onsiders di�erent models and in-

terations, the general features are the same. At the surfae the density is only on

the order of � 10 g m

-3

, whih is about the same as `normal' matter. The density

rises rapidly through two layers of rust to � 2 � 10

14

g m

-3

. The outer layer of

rust onsists of a gas of nulei and eletrons. Above the neutron drip density

� 4� 10

11

g m

-3

the gas is supplemented by neutrons to form the inner rust. At
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~ 0.5 km
x

-3

x

Outer crust:
-nuclei + e

~ 0.3 km

~ 10 km

µ
Uniform nuclear matter

Inner crust :
nuclei, neutrons + e -

?

 -3

? ?

4    10  g cm 
 11

2    10  g cm 
14

−n + p + e  +

Figure 6.2: Shemati view of the possible struture of a neutron star showing regions

where nulei and nulear matter dominate. The entral region may be quark matter.

Figure is take from Ref.[86℄

greater densities, from about � 4�10

11

g m

-3

to � 10

15

g m

-3

the star onsists of

homogeneous nulear matter with eletrons and, above the threshold density for

their reation, muons. At higher densities, in the ore, hyperons may appear, or

even quark matter. Sine the interation under study is between nuleons only,

the npe� region is extrapolated to the ore. This is the tehnique adopted by

Chabanat et. al.[22℄ and Wiringa et. al.[87℄.

In this setion, the usual notation for desribing neutron stars is used, whih

is somewhat ontrary to the usual nulear physiist's notation for nulear mat-

ter. The number densities are written as n

b

, n

p

and n

n

for baryons, protons and

neutrons respetively. The symbol � is used as the mass density.

To desribe a neutron star's properties an equation of state is derived whih is

the pressure as a funtion of the density

P(n

b

) = n

2

b

d(e=n

b

)

dn

b

(6.43)

where e is the energy density, and is related to the mass density �(n

b

) = e(n

b

)=

2

.

The equation of state is derived in Appendix G.
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EOS Separable SLy230a SLy230b Separable SLy230a SLy230b

on�guration M

max

M

max

M

max

1:4M

�

1:4M

�

1:4M

�

n



(fm

-3

) 1.14 1.15 1.21 0.459 0.508 0.538

�



(10

14

g m

-3

) 26.6 26.9 28.5 8.43 9.25 9.85

R (km) 10.3 10.25 9.99 12.1 11.8 11.7

M (M

�

) 2.02 2.10 2.05 1.40 1.40 1.40

A (10

57

) 2.80 2.99 2.91 1.84 1.85 1.85

E

bind

(10

53

erg) 5.69 7.07 6.79 2.34 2.60 2.61

z

surf

0.539 0.591 0.593 0.233 0.240 0.244

Table 6.2: Parameters of the neutron star models. n



is the entral number density and

is the independent variable in the equation of state. �



is the entral mass density. R

is the radius of the star, M is the mass in units of the solar mass. A is the number of

baryons. E

bind

is the binding energy of the star and z

surf

is the gravitational red-shift (see

ref [22℄)

The alulation of a neutron star in this work is valid for non-rotating neutron

stars. This is neessary for a simple alulation to be possible, and thanks to

the Hubble telesope a non-rotating, non-areting neutron star has atually now

been observed due to its thermal emission alone[88℄. For suh a non-rotating

star, Tolman, Oppenheimer and Volko� (TOV) derived an equation of hydrostati

equilibrium[89, 90℄:

dP

dr

= -

Gm�

r

2

�

1+

P

�

2

� �

1+

4�r

3

P

m

2

�

1-

2Gm

r

2

(6.44)

with

m(r) =

Z

r

0

4�r

0

2

�(r

0

)dr

0

: (6.45)

To solve these equations the following proedure is used:

� A entral density, �



is hosen. This gives from the EoS the entral pressure,

P



. The boundary ondition m(r = 0) = 0 is hosen.

� The TOV equation, (6.44), and the mass relation (6.45) are integrated nu-

merially out from r = 0. This yields at eah step a pressure, P(r), given by

the EoS.

� The ondition P = 0 de�nes the surfae of the star, at whih r = R is the

radius and m(R) is the mass.

With this presription the TOV equation is solved for a number of entral densi-

ties. A onsequene of general relativity is that a maximum mass exists for the

star. Results for some observables are shown in Table 6.2 for the maximum mass
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Figure 6.3: Gravitational mass in units of solar mass of neutron star as a funtion of the

entral baryon density. Solid line is for the separable interation in this thesis and the

dashed line is for the Skyrme parameterisation SLy230a[22℄.

star and for a star of mass 1:4M

�

whih is a ommonly hosen benhmark in the

literature. The results for the separable fore are ompared with results from Cha-

banat et. al. [22℄ whih are for Skyrme fore parameterisations �tted to nulei at

the extremes of density and isospin asymmetry.

Figure 6.3 shows themass of the neutron star as a funtion of the entral baryon

density. The onlusion from these results is that the separable interation gives

rather similar results to the best Skyrme interations used for neutron star alu-

lations. The Skyrme fores to whih the separable interation is ompared were

themselves ompared[22℄ to the \realisti" alulations of Wiringa et. al.[87℄

and found to be very similar. The separable fore, then, predits similar neutron

star properties to other ontemporary models, using both realisti and e�etive

interations.

Figure 6.4 shows neutron star binding energy as a funtion of mass. The box in-

diates the measured mass and binding energy, based on observed energy release,

of the neutron star whih presumably was reated in the supernova 1987A[91℄.

The separable fore alulations are onsistent with this observation sine part of

the urve lies within the box.
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Figure 6.4: Binding energy of a neutron star as a funtion of its mass. The box represents

the possible values for the neutron star reated in Supernova 1987A.

6.6 Perturbation Calulations

So far the treatment of nulear matter has been at the mean-�eld level with the

single-partile states being plane waves. One would also like to alulate the or-

retions to this approximation sine they ould be quite large, partiularly in the

ase of hard-ore potentials. The usual approah taken in these ases is to in-

lude all the ladder diagrams whih is failitated by solving the Bethe-Goldstone

equation[92, 36℄. In the ase of the separable interation, the following remark-

able property holds: In in�nite nulear matter the solution of the HF equations

represents the exat ground state. To see this, one notes that the orrelations to

�

r s

b

a

Figure 6.5: Insertion appearing at the bottom of every Hugenholz diagram for the va-

uum amplitude.
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the ground state energy an be desribed in terms of Hugenholz diagrams (See

Appendix D). Following the rules given in the Appendix, one �nds that all dia-

grams must inlude the insertion shown in Figure 6.5. This follows from the fat

that a diagram must have a lowest dot, in the sense of being at the bottom of the

diagram (i.e. earliest in time-ordering). Sine four lines must leave this dot and

they must onnet to others, eah of the lines must move upwards. Furthermore,

by the rules of labelling lines, two of them must enter the dot and two must leave,

so two are hole lines and two are partile lines. The matrix element assoiated

with this dot is then

habj

~

Vjrsi (6.46)

with a and b representing hole states and r and s representing partile states. Due

to the nature of the separable interation, the matrix element beomes

habj

~

Vjrsi /

�

haj�

�

jrihbj�

�

jsi- haj�

�

jsihbj�

�

jri

�

(6.47)

whih is zero sine the density is just a onstant in in�nite nulear matter and eah

hole state is orthogonal to eah partile state.



Chapter 7

Ground-State Properties of Nulei

This hapter presents results for a set of parameters �tted aording to the pre-

sription of Chapter 3. All Hartree-Fok alulations are performed in a basis with

12 radial states per angular momentum state and iteration ontinues until the HF

energy has onverged to 10keV. The resulting set of basis states then forms the

referene state used in the perturbation alulation. Sine ample experimental

data exist for �nite nulei, unlike in�nite nulear matter, the emphasis is on om-

parison to experimental data rather than to other interations.

7.1 Fore Parameters

The parameters for the monopole fore are presented in Table 7.1. The higher

multipole parameters are not inluded in this �t sine their main ontribution is

to exited states and to deformations and �xing the parameters to a �t to ground-

state properties of spherial nulei is not appropriate. Some disussion of their

possible role in the region of this �t is given.

W

a

�

a

�

a

a

a

b

a

-1543.8 MeV fm

3

2.0 1.0 -0.4295 -0.419825

W

r

�

r

�

r

a

r

b

r

1778.0 MeV fm

3:8265

2.2165 1.246 -1.4788 -0.314625

 k

160.0 Mev fm

5

16.0 Mev fm

10

Table 7.1: Monopole fore parameters

69
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7.2 Nulear Energies

The nulear energies per partile of the nulei in the �t are plotted in Figure 7.1

in the HF approximation and ompared to the experimental results. Most of the

experimental data are taken from Ref. [93℄ and have an experimental error of

300 keV or less, whih makes the error bar smaller than the symbol on the plot

in all ases. The value for

100

Sn was reently measured at 825.8(9) Mev[94℄. The

data for

48

Ni is extrapolated from a systemati study and is assumed to have an

error of only about 200 keV [97℄. The value for

78

Ni is also an extrapolated value.

The ontributions due to the perturbation theory are not shown in the �gure sine

they are rather small and would not be readily distinguishable from the points for

the Hartree-Fok energies for most of the nulei. They are presented in Table 7.2

along with the experimental values.

The alulated energies are seen to follow the same trends as the theoretial

urve, although there are some notable exeptions.

16

O is learly very under-

bound. Owing to the fat that the entre-of-mass orretion is not treated, one

50 100 150 200

A

6.5

7

7.5

8

8.5

9

η 
[M

eV
]

Hartree−Fock
Experiment

Figure 7.1: Binding energy per nuleon in HF approximation
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Nuleus E

HF

E

(2)

E

(3)

hh

E

(3)

pp

E

(3)

ph

E

HF+2+3

� Expt.

16

O -109.32 -3.31 -0.1365 -0.3624 +0.921 -112.21 0.063 -127.68

34

Si -280.88 -7.37 -0.0384 -0.4830 +1.223 -287.55 0.232 -283.43

40

Ca -334.53 -2.51 -0.0323 -0.1114 +0.233 -336.95 0.052 -342.00

48

Ca -417.01 -5.97 -0.0189 -0.2725 +0.273 -422.70 0.202 -416.16

48

Ni -360.69 -6.57 -0.0130 -0.2058 +0.427 -367.05 0.234 -348.33

56

Ni -481.25 -2.31 -0.0210 -0.0643 +0.123 -483.52 0.046 -483.99

68

Ni -593.33 -6.00 -0.0109 -0.2091 +0.484 -598.85 0.221 -590.43

78

Ni -651.90 -8.34 -0.0053 -0.1458 +0.477 -659.92 0.342 -641.38

80

Zr -663.41 -1.87 -0.0087 -0.0411 +0.107 -665.22 0.044 -669.79

90

Zr -782.70 -3.91 -0.0070 -0.1257 +0.103 -786.51 0.149 -783.89

100

Sn -825.65 -1.71 -0.0060 -0.0220 +0.048 -827.35 0.039 -825.80

114

Sn -963.20 -4.04 -0.0046 -0.1093 +0.226 -967.12 0.162 -971.57

132

Sn -1097.65 -6.17 -0.0023 -0.0864 +0.209 -1103.70 0.287 -1102.92

146

Gd -1190.32 -3.42 -0.0026 -0.0699 +0.142 -1193.66 0.146 -1204.44

208

Pb -1599.04 -4.51 -0.0013 -0.0664 +0.108 -1603.51 0.233 -1636.45

Table 7.2: Monopole Hartree-Fok energy and orretions from perturbation theory

ompared with experimental value. All energies are in MeV

might expet to do quite badly in the lightest nulei. On the other hand, typial

values for the entre-of-mass orretion in

16

O are about ten MeV[95℄ whih is

about half the di�erene between the experimental and alulated value presented

here. Of ourse, one would need to re-�t the parameters in any ase if the enter-

of-mass orretion were inluded. An alternative possibility is that the value of

the a-parameters are too large. From Fig. 5.3 it is seen that the ontribution

to the HF energy from the exhange term proportional to the a parameters is

partiularly large and positive for

16

O. Its value is seleted to improve the overall

�t, but it does so at the expense of the �t to

16

O. A possible solution lies in the

multipole fores whih for spherial nulei at only in the exhange term whih,

like the monopole terms, presumably is strongest in the lightest nulei, the hoie

of the A-dependent f

D

and f

Q

parameters notwithstanding.

The quality of the �t elsewhere is muh better, with the next worst ase after

oxygen being

40

Ca, whose Hartree{Fok binding energy is about �ve perent o�

the experimental value. At the other end of the hart,

208

Pb is under-bound by

quite a large amount in terms of total binding, but is not as serious a disrepany

in terms of energy per partile as in the lightest nulei.

7.2.1 Perturbation Corretions

The smallness of the perturbation orretions in all the nulei is notable. This

work was prediated on the premise that it would be possible to �nd an e�etive
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interation whih, when used in perturbation theory, would onverge quikly with

small orretions on top of the mean-�eld, and this is ertainly a harater of

the hosen interation. It is diÆult to say how large the orrelations ought to

be sine, as was pointed out in Chapter 2, the size of the orrelations depend

upon the eÆay of the single partile Hamiltonian. As a matter of omparison,

orrelation e�ets in Skyrme interations have been estimated to be order of about

ten MeV[96℄ for the total binding energy.

The A-dependene of the seond order orretion seems to be that the total

orretion to the HF energy remains of about the same order for nulei aross

the periodi table. It has already been shown that the orretion per nuleon in

in�nite nulear matter is zero so the orretions for any diagram in �nite nulei

must have an A-dependene weaker than / A. The reason for the lak in inrease

in binding energy orretion in heavier nulei may be explained in a similar way

to the zero nulear matter orretions. In that ase it was the onstant density

whih produed zero matrix elements. In the ase of a heavy nuleus, the density

is quite onstant over the interior and only hanges at surfae, whih may be of

about the same width as in a light nuleus. In this way, the orrelations may be

seen as predominantly a surfae e�et, even though the fore ats equally strongly

over all ranges in the nuleus.

In addition, the orretions from perturbation theory are seen to be greater in

N6=Z nulei. From the disussion of the isospin-dependent term in Chapter 5, the

reason for this is known to be that in N6=Z nulei the isospin \ipping" operator,

�

+

1

�

-

2

+ �

-

1

�

+

2

, allows exitations in the same major shell to our whih give a large

ontribution. It is presumably not the ase that N=Z nulei in fat have less or-

relation energy than N6=Z nulei so it may be neessary to onsider reduing the

strength of the isospin-dependent terms, although this would redue the overall

quality of the �t. On the other hand the inlusion of multipole fores whih al-

low for a muh broader range of exitations than the monopole fore alone should

smooth out these di�erenes and inrease the magnitude of the orrelations.

In addition to the size of the orrelations, the sign is also interesting. The se-

ond order orretion is always negative de�nite but higher order orretions may

be of any sign. In the third order the largest, by far, diagram { the partile-hole

diagram { is always seen to be positive. This is in aord with studies of orrela-

tions with other fores [54, 96℄. That it is the largest ontribution suggests that

long-range orrelations are the most important e�et arising from the monopole

interation.

7.3 Charge Radii and Densities

The root mean-square harge radii for the nulei in the �t are given in Table 7.3

along with experimental data for those nulei where it exists. The agreement with

experiment is seen to be very good, with the main exeption being

16

O, in whih
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Nuleus r

h

HF (fm) r

h

exp (fm)

16

O 2.85 2.69

34

Si 3.19

40

Ca 3.54 3.48

48

Ca 3.47 3.48

48

Ni 3.88

56

Ni 3.84 3.78

68

Ni 3.89

78

Ni 3.87

80

Zr 4.33

90

Zr 4.29 4.27

100

Sn 4.60

114

Sn 4.65 4.60

132

Sn 4.66

146

Gd 5.02 4.96

208

Pb 5.50 5.50

Table 7.3: Root mean-squared harge radii in HF approximation and experimentally.

Experimental data is from [99℄

the error is about 5%, whih is rather less than the error in the binding energy. The

results are also displayed graphially in Fig. 7.2. The radii seem, in general, to

be better reprodued than the binding energies, although data is not available for

some of the more weakly bound nulei presented. The radii for the under-bound

light nulei are somewhat too large, whih is what one should reasonably expet

to aompany under-binding. The relative good quality of the harge radii over

the binding energy suggests that the single partile properties are omparatively

better reprodued than many-body properties in the HF approximation.

Figures 7.3-7.17 show the point neutron, proton, harge and total densities

for all the nulei under onsideration. In all plots, the total point density is the

same on both sides of the y-axis. The left-hand side also gives the neutron point

density and the right-hand side shows the proton point density as well as the

harge density and, in ases where data is available, the experimental data.

The experimental data for the harge density is from the Fourier-Bessel de-

omposition in table IX of Ref. [99℄. Even for those nulei for whih no data is

available, the densities are plotted sine they have a diret physial interpretation

and they play an important role in the present interation.

As shown by the moderate error in the harge radii, there is a visible disrep-

any in the harge densities of

16

O and

40

Ca, partiularly in the entral region,

though the error in the Fourier-transformed experimental data is the greatest in

this region. This error should probably not be taken too seriously sine no entre-

of-mass orretion is taken into aount. The sale on all the plots is the same
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7.4 Form fators

The harge form fators are shown for those nulei where experimental data is

available, namely

16

O,

40

Ca,

48

Ca,

90

Zr and

208

Pb. The position of the �rst zero is

learly moves lower in momentum as Z inreases, showing the inrease in radius.

As one would expet having already seen the �ts to the densities, the quality of

eah �t to the Fourier transforms of the density are roughly equal in quality to

the �ts to the density. They are presented along with the densities sine they are

diretly related to the experimental observables, as mentioned in Chapter 5.
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7.5 Single-Partile energies

Calulated single partile energies are shown in Figures 7.23-7.28 ompared to

experimental data, taken from Refs.[21℄ and [97℄. Only the nulei for whih ex-

perimental data were available are plotted, exept

90

Zr for whih neutron data are

available. The position of the fermi level is indiated by the enirled number,

whih itself shows how many partiles oupy the levels up to that point.

Firstly, one notes that the N;Z = 8 shell losures in

16

O are somewhat poor, as

is the 20 partile shell losure in

40

Ca. This appears to be due in part to the overly-

deep binding of the d

5=2

state above the N;Z = 8 shell and the f

7=2

state above the

N;Z = 20 shell. The oupied states nearest the fermi level appear also to be

pushed up, but given the underbinding in these light nulei, the exessive depth

of the unoupied levels seems more remarkable. The e�et does not take plae

for the N;Z = 12 or N;Z = 28 gaps. The fat that the pushed-down states are the

lowest states of their given angular momentum may be of some signi�ane. Sine

the monopole fore only involves interations between single-partiles and other

single-partiles with exatly the same angular quantum numbers, the set of states

of a given angular momentum for whih not even the lowestN-state is unoupied

feel the exhange interation di�erently to those states in whih at least one state

sharing angular quantum numbers is oupied. This e�et was notied earlier in

Fig. 5.15 where it was seen that 0f

7=2

and 0f

5=2

states in

48

Ca had di�erent single-

partile energies in the absene of the spin-orbit fore. Alternatively, sine the

smallness of the Z = 20 gap in

48

Ca is not so extreme, and the N = 20 gap in

34

Si is quite satisfatory, it ould be that the problem is something to do with the

properties of N = Z nulei.

In the heavier nulei (

132

Sn and

208

Pb) the level densities and shell gaps or-

respond muh more losely to experiment than in the lighter nulei. A possible

fator here, as elsewhere, is the omission of the entre-of-mass orretion is neg-

ligible in the heavy nulei but not so in the lighter. Some of the details of the level

ordering for neutron states in

132

Sn is seen to be at odds with experiment. It is

noted that this is a ommon feature of Skyrme mean-�eld alulations[97℄.

The results in the light nulei are similar to those in a reent work by Brown[97℄

in whih a Skyrme paramaterisation was �tted to, amongst other things, the single

partile spetra of light nulei. He attributed the too-small gap in

16

O and

40

Ca

as being due to not onsidering orrelation e�ets in whih single partiles are

exited aross the gap. A alulation with just the monopole fore alone would

not aount for the lowest energy exitations, but the quadrupole fore might

improve matters if its ontribution to the mean-�eld is alulated, or it is used to

evaluate orretions to the single-partile energies in perturbation theory.
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Chapter 8

Summary and Conlusions

A density-dependent separable multipole interation has been presented and used

in alulations of even-even spherial nulei in the Hartree-Fok approximation

on top of whih orretions to third order in the energy have been alulated. In

addition, the properties of symmetri and asymmetri nulear matter have been

studied as well as those of a neutron star.

From alulations of the perturbation series, it is found that the interation

is weak and the �rst terms in the perturbation series are small and appear to

onverge quite rapidly.

An approximate �t of the fore parameters has been made to the ground-state

properties of �nite nulei and the single-partile observables (single-partile en-

ergies and one-body densities) agree well with experiment. The agreement of the

HF energy is quite reasonable, but not of the same quality as ontemporary ef-

fetive interations used in HF models. However, this work represents the most

suessful appliation of the standard perturbation theory alulation in nulei,

improving quite signi�antly on the quality of the results ompared to previous

alulations, whih were disussed in Chapter 3.

A de�ieny of the present alulation is the unertainty over the multipole

parameters. Sine the multipole e�ets manifest themselves in suh ways as de-

formations and exited state spetra, it is not possible to determine their strengths

with the alulation of the ground states of spherial nulei. The next step there-

fore is to perform alulations of deformed nulei to �t the multipole parameters

and to develop tehniques to alulate exited state properties using perturbation

theory.

90



Appendix A

Hartree{Fok Equations

The Hartree-Fok (HF) approximation is based on the idea that a system of inter-

ating fermions may be desribed as a system of fermions moving independently

in a one-body potential. This \mean �eld" is supposed to desribe the average of

the interations of a given partile with all the others.

This mean �eld is represented by a one-body Hamiltonian, the HF Hamilto-

nian, the solution the one-dimensional Shr �odinger equation with this Hamilto-

nian gives the single partile states whih the fermions oupy:

^

h

HF

(x)'

b

(x) = �

i

'

i

(x): (A.1)

To determine the HF potential one makes the ansatz of a Slater determinant

of the single partile wavefuntions for the many-body wavefuntion:
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and requires that the expetation value of the full Hamiltonian in this state be an

extremum. One thus varies this expetation value with respet to the set of single

partile wavefuntions and sets it to zero:

Æ

Æ'

�

i

(x)

2

4

h�j

^

Hj�i-

N

X

i=1

�

i

Z

dy'

�

(y)'(y)

3

5

= 0 (A.3)

where the N Lagrange multipliers serve to ensure the normalization of the single

partile wave-funtions. Note that the presription for �nding the HF Hamilto-

nian depends on the single partile wavefuntions whih are its solution, so there

is a self-onsisteny ondition whih is usually dealt with by solving the HF equa-

tions iteratively. These HF equations are derived from the variational equation
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(A.3) by expressing the expetation value of the Hamiltonian in a Slater determi-

nant in seond quantization notation:

h�j
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X
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hijjv [jiji- jjii℄ ; (A.4)

where u is the one-body part of the interation, inluding kineti energy term,

and v is the two-body part. Using the result from funtional alulus

Z

dy

X

i

Æ'

�

i

(y)

Æ'

�

b

(x)

= Æ

ib

Æ(x- y) (A.5)

the variational equation beomes
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by relabelling dummy indies and oordinate labels, the seond and third and

the �fth and sixth terms are seen to be equal. Furthermore, expressing the one-

partile density and two-partile density matrix of a Slater determinant as
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the equation (A.6) beomes
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The �rst line of this equation is in the form of an eigenvalue problem and is the

standard Hartree-Fok equation. From it, a one-body potential may be de�ned:

U
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i

(x) =

"

u(x) +

Z
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Z
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i

(y) (A.7)

whih is the Hartree-Fok potential. Note that it is inherently non-loal in nature

thanks to the exhange term. In addition, if the potentials u(y) or v(x; y) depend

on the wavefuntion - in pratie this means dependent on the densities - then

the seond and third lines of (A.6) are non-zero and there is a further ontribution

to the Hartree-Fok potential, known as the rearrangement potential.



Appendix B

Many-Body Perturbation Theory

B.1 Hartree-Fok and Perturbation Theory

The Hamiltonian for a system of fermions interating via one and two body inter-

ations is written, in the language of seond-quantization,

H =

X
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a
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: (B.1)

Here the one-body part of the Hamiltonian is labelled u. The two-body part is

v and a

y

and a are fermion reation and annihilation operators respetively. If

one applies Wik's theorem[100℄, whih states that a produt of operators may

be written as the sum of all ontrated normal-ordered produts, the Hamiltonian

beomes
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where the olons (:) denote normal-ordering of the operators within them and the

braes denote ontrations. Only ontrations between a reation and annihilation

operator have been retained sine all other ontrations are zero in the ase of a

sharp fermi surfae, whih is always true in the representation under onsideration

in this work.

The ontrations a

y

a

a



are zero if either states a or  are unoupied and Æ

a

otherwise so the Hamiltonian redues to
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where h represent hole states, i.e., states whih are oupied in the representation

used. Sine the matrix elements are anti-symmetrized and, using the symmetry

habj~vjdi = hbaj~vjdi, the Hamiltonian redues to

H =
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Taking the expetation value of the Hamiltonian in the referene state j0i of o-

upied orbitals below the Fermi surfae, only the terms without normal-ordered

produts survive:
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The seond line of Equation (B.4) desribes a one-body �eld. It is written for in an

arbitrary Hilbert spae representation and one is free to hoose a partiular basis.

A onvenient hoie is that whih diagonalizes this single-partile Hamiltonian,

i.e.

hajuji+

X

h<�

F

hahj~vjhi = �

a

Æ

a

(B.6)

whih an be written as
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(B.7)

with the one-body �eld w de�ned as

hajwji �
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Equation (B.6) is just the Hartree-Fok equation in seond quantized notation.

This an be seen by taking equation (A.6) and ating left with
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whih is just (B.6) in oordinate spae, so that the Hamiltonian redues to the

form
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where a division of the Hamiltonian into parts labelled H

0

and H

1

is given for the

purposes of performing perturbation theory.

B.2 Many-Body Perturbation Theory

Having partitioned the Hamiltonian into two parts, H = H

0

+H

1

it is assumed that

the eigenvalue problem assoiated with H

0

has been solved:
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A parameter is separated out of the perturbing term: H

1

= �

�

H

1

so that it an be

used to keep trak of the order of perturbation theory. In the end it an be set to

unity.

The full Shr �odinger equation whih needs to be solved is
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for the ground state of the system. One has
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The energy shift, the di�erene between the exat and unperturbed energies is
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The operator whih projets onto the ground state of the unperturbed problem is

de�ned as

P � j�
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j; (B.14)

and its omplement is
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This operator, Q ommutes with H

0
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for an arbitrary number, E. Therefore

Qj	

0

i =

1

E -H

0

Q(E- E

0

+H

1

)j	

0

i = j	

0

i- j	

0

ih�

0

j�

0

i; (B.17)

then by de�ning
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whih an be iterated to give
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Using this in the expression (B.13) for the energy shift, one obtains
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This expression is true for any value of the number E. Setting E = W

0

, the ground

state eigenvalue of the unperturbed problem, the resulting expressions give the

Rayleigh-Shr �odinger perturbation theory:
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Note that by setting E = E

0

one obtains the Brillouin-Wigner perturbation series.

To obtain the perturbation series order by order, terms in (B.21) and (B.22)

are grouped aording to the order of the oupling onstant �. For the energy:
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whih onsists of a term of order � �

3

and a term whih ontains all orders of � �

3

or greater. Taking the terms by order in � the perturbation series for the energy
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: (B.25)

The �rst order energy orretion is zero for the present ase, sine the perturbation

is a normal-ordered produt of operators whih de�ne the ground state in whih

their expetation value is being taken.

The seond order orretion to the energy is ommonly obtained by reating a

�titious time-dependent problem in whih the interation H

1

is turned on adia-

batially so that the full solution is obtained at t = 0. This approah is detailed in

the textbooks[35, 39℄. An alternative approah is to make use of the algebra of

seond quantization. The seond order energy is

�E

(2)

=

1

X

n=1

h�

0

jH

1

j�

0

ih�

n

jH

1

j�

n

i

W

0

-W

n

=

1

X

n=1

jh�

0

jH

1

j�

n

ij

2

W

0

-W

n

(B.26)

The state j�

n

i must be of the form a

y

r

a

y

s

a

a

a

b

j�

0

i, i.e. a state with two partiles

exited from the HF ground state so that the matrix element h�

0

jH

1

j�

n

i is non-

zero, H

1

ontaining two a-reation and two a-annihilation operators. To avoid

double ounting, the ondtitions

s > r > �

F

a < b � �

F

apply. The eigenvalue of the unperturbed Hamiltonian of the exited state j�

n

i

whih appears in the denominator as W

n

is

W

n

= W

0

+ �

r

+ �

s

- �

a

- �

b

; (B.27)

so that the seond order energy orretion is

�E

(2)

=

X

a<b��

F

X

r>s>�

F

�

�

�h�

0

jH

1

a

y
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s

a

a

a

b

j�

0
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�

�

�

2

�

a

+ �

b

- �

r

- �

s

: (B.28)

To evaluate the matrix elements a new set of reation and annihilation operators

is de�ned whose ation on the true vauum j

~

0i is the same as the of the a operators

on the Hartree-Fok ground state j�

0

i:

a

y

a

j�

0

i =

�



y

a

j

~

0i; a > �

F



a

j

~

0i; a < �

F

a

a

j�

0

i =

�



a

j

~

0i; a > �

F



y

a

j

~

0i; a < �

F
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so that the matrix element, with the normal-ordered produt of operators is (see

(B.10))

1

4

X

��Æ

h��j~vjÆih�

0

j : a

y

�

a

y

�

a

Æ

a



: 

y

r



y

s



y

a



y

b

j

~

0i (B.29)

The matrix element will be non-zero if when translating the bra side to the 

representation, four -annihilation operators are produed. This means that �

and � must be hole states in the HF representation and  and Æ must be partile

states:

1

4

X

����

F

X

Æ>�

F

h��j~vjÆih

~
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�



�



Æ
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s



y

a



y

b

j

~

0i (B.30)

Sine � and � are hole states and a and b are hole states, and the other operators

pertain to partile states, the matrix element of the -operators an be separated

as

h

~

0j

�



�



y

a



y

b

j

~

0ih

~

0j

Æ







y

r



y

s

j

~

0i (B.31)

The �st matrix element here will be unity if b = � and a = � or -1 if a = � and

b = �. This an be written as a generalized antisymmetri delta funtion:

h

~

0j

�



�



y

a



y

b

j

~

0i = Æ

ab

��

�

�

�

�

�

�
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Æ
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Æ
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�

�

�
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= Æ

�a

Æ

�b

- Æ

�b

Æ

�a

(B.32)

so that the matrix element (B.30) beomes

h�

0

jH

1

a

y

r

a

y

s

a

a

a

b

j�

0

i =

1

4

X

��Æ

h��j~vjÆiÆ

ab

��

Æ

rs

Æ

= -habj~vjrsi: (B.33)

Hene the seond order energy orretion is

�E

(2)

=

X

a<b��

F

X

r>s>�

F

jhabj~vjrsij

2

�

a

+ �

b

- �

r

- �

s

: (B.34)

Note that the numerator is always positive de�nite and the denominator is neg-

ative, so the seond order energy orretion always lowers the total energy from

that of the Hartree-Fok result. It is often onvenient to remove the restritions

a < b and r > s. For eah removal one doubles the set of states being summed

over, so an extra fator of 1=2 is needed. The extra restritions a 6= b and r 6= s are

taken are of sine the pairs of labels appear together in a bra or a ket and also

in the energy denominator, although this is only true for seond and third order

diagrams. The seond order energy then may be written

�E

(2)

=

1

4

X

ab��

F

X

rs>�

F

jhabj~vjrsij

2

�

a

+ �

b

- �

r

- �

s

: (B.35)
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A dimensionless quantity related to the seond order energy orretion is the so-

alled \wound integral", �[101℄, de�ned by

� =

1

4

X

ab��

F

X

rs>�

F

jhabj~vjrsij

2

j�

a

+ �

b

- �

r

- �

s

j

2

: (B.36)

It is always positive and represents the number of partiles in the wavefuntion

whih are not in the ground-state Slater determinant.

This same proedure an be used for evaluation of higher order energy or-

retions and wavefuntion orretions[54℄. A more onvenient method has been

developed for the purposes of writing down the expressions for perturbation the-

ory whih is dealt with in the next Appendix.



Appendix C

Hugenholz Diagrams

C.1 Introdution

In 1949 Feynman found that perturbation series enountered in �eld theory

ould onveniently be represented diagramatially[102℄. Following this lead,

Goldstone[103℄ and Hugenholz[61℄ both used similar diagrammati tehniques

in the treatment of many-fermion perturbation theory. Either set of diagrams

may be used to alulate observables, but in this work the Hugenholz diagrams

are used sine for a given order of perturbation theory there are fewer diagrams

to write down. The diagrammati series for the ground state energy alulation is

presented here.

C.2 Unlabelled Diagrams

For a given order, N, of perturbation theory, one draws N vertially ordered dots

and then onnets them up with lines in all possible ways subjet to the following

onditions:

� Eah dot has four lines emanating from it

� Eah diagram is topologially distint

� Eah diagram is linked

� No line onnets a dot with itself

The �rst requirement is a onsequene of the perturbation term onsisting of a

two-body interation. The seond onditions ensures that diagrams are ounted

only one. The third is a onsequene of the linked-luster theorem whih shows

that if a diagram onsists of disonneted parts then eah part will already have

been inluded in lower order diagrams and should not be inluded again. The �nal

102
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ondition is a onsequene of Brillouin's theorem and results from using the HF

basis as the referene state for perturbation theory.

Using these rules one an see that there is only one possible seond-order

diagram, shown in Fig C.1. There is also only one unlabelled third order diagram

(Fig C.2) but there are 12 unlabelled fourth order diagram, shown in Figure C.3.

�

Figure C.1: Unlabelled seond-order Hugenholz diagram

�

Figure C.2: Unlabelled third-order Hugenholz diagram

As one goes up in order of perturbation theory, the number of unlabelled

Hugenholz diagrams to be alulated inreases rather dramatially. Following the

rules given in this setion, one an develop an algorithm to ount the number of

diagrams in eah order. This has been done by the author for unlabelled diagrams.

Table C.1 shows these numbers. The large number of diagrams for higher orders

suggests that expliit diagram-by-diagram evaluation of the perturbation theory

will be impratial for systems in whih the series has not suÆiently onverged

by the fourth, or perhaps �fth order.

Order 2 3 4 5 6 7

Unlabelled Diagrams 1 1 12 148 3150 90075

Table C.1: Number of Hugenholz diagrams by order of perturbation theory

C.3 Labelled diagrams

One one has an unlabelled diagram, eah of the lines needs to be labelled before

it an be evaluated. Labelling onsists of putting an arrow on eah of the lines

either pointing up or down subjet to the following rules:
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� � � �

� � � �

� � � �

Figure C.3: Unlabelled fourth-order Hugenholz diagrams

� Eah dot has two lines entering it and two leaving it.

� Eah diagram is topologially unique.

An up-pointing arrow represents a partile state, whih is to say a partile existing

in an orbital unoupied in the referene state. A down-pointing arrow represents

a hole state, whih is the absene of a partile in a state whih is oupied in

the referene state. Eah unlabelled diagram may have more than one labelled

representation. In the ase of the seond order there is only one, whih is shown

in Figure C.4.

�

rs

b

a

Figure C.4: Labelled seond-order Hugenholz diagram

In third order, there are three distint ways of labelling the unlabelled diagram,

shown in Figure C.5
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�

a

b

r s



d

�

r s

t

u

a

b

�

r

s

a

t

b



Figure C.5: Labelled third-order Hugenholz diagrams

The presription for writing down the mathematial form of the energy ontri-

bution from eah graph is as follows:

� For eah dot, write down a fator of an antisymmetrimatrix element of the

interation in the form h label-in-1 label-in-2j

~

Vj label-out-1 label-out-2i. The

ordering of the two \in" and \out" labels is not important here, although it

will a�et a phase later on.

Between eah suessive pairs of dot, draw an imaginary horizontal line

and for eah suh line ontribute a fator in the denominator of (

P

�

holes

-

P

�

partiles

).

�� Sum eah hole label over all oupied HF states, and eah partile label over

unoupied states.

� Multiply by a fator 1=2

k

where k is the number of equivalent pairs of lines

in the diagram. An equivalent pair is a pair of lines starting and ending at

the same dot, and pointing in the same diretion.

� Inlude a phase (-1)

h+l

where h is the number of hole lines and l is the

number of losed loops. A presription for alulating the number of losed

loops appears below.

C.4 Seond-order Energy Corretion

Using the above rules, the expression for the seond order ground state energy

orretion, given in expression (C.4), an be written down as

�E

(2)

=

1

2

2

(-1)

2+l

X

ab��

F

X

rs>�

F

habj

~

Vjrsihrsj

~

Vjabi

�

a

+ �

b

- �

r

- �

s

: (C.1)

To determine the number of losed loops, one writes down the series of matrix

elements in this expression and starting with the �rst one follows through all the

labels whih appear in the same position on the other side of the matrix element

until one arrives bak at the starting label. If any labels are not inluded in the �rst
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path, one starts on suh a label and ontinues until all labels have been inluded.

The number of separate paths is then the number of losed loops.

In the above ase, the matrix elements are

habj

~

Vjrsihrsj

~

Vjabi;

so starting at a in the �rst matrix element, one proeeds:

habj

~

Vjrsihrsj

~

Vjabi; (C.2)

whih is one losed loop a ! r ! a. Starting from the �rst \unused" label, b,

another loop exhausts the rest of the labels b! s! b:

habj

~

Vjrsihrsj

~

Vjabi; (C.3)

so in this ase l = 2 and the expression for the seond order energy orretion is

�E

(2)

=

1

4

X

ab��

F

X

rs>�

F

habj

~

Vjrsihrsj

~

Vjabi

�

a

+ �

b

- �

r

- �

s

: (C.4)

This is exatly the same as the expression (B.35) derived in the previous Appendix.

C.5 Third-order Energy Corretion

C.5.1 Hole-hole Sattering term

The �rst diagram in Fig (C.5) is alled the hole-hole sattering term sine the

matrix element assoiated with the middle dot has a hole-hole state both as the

initial and the �nal state. Following the rules to write down its expression gives

E

(3)

hh

=

1

8

X

a 6=b��

F

X

6=d��

F

X

r6=s>�

F

(-1)

4+l

habj

~

Vjrsihdj

~

Vjabihrsj

~

Vjdi

(�

a

+ �

b

- �

r

- �

s

)(�



+ �

d

- �

r

- �

s

)

(C.5)

The number of losed loops is evaluated as:

habj

~

Vjrsihdj

~

Vjabihrsj

~

Vjdi

1 23

(C.6)

where the numbers indiate the order in whih the arrows operate to form the

loop a! r! ! a. A seond loop exhausts the labels b! s! d! b,

habj

~

Vjrsihdj

~

Vjabihrsj

~

Vjdi

1 23

(C.7)

so that l = 2 and the sign of the term is positive.
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C.5.2 Partile-Partile Sattering term

Following the same proedure for writing down the expression and ounting the

number of losed loops, the seond diagram in Figure C.5 is

E

(3)

pp
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1

8

X
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F

X

r6=s>�

F

X
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F
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(�

a
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b

- �
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- �

s

)(�
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+ �
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- �

t

- �

u

)

(C.8)

C.5.3 Partile-Hole Sattering term

The �nal diagram in Figure C.5 is

E

(3)

ph

=

X

a 6=b6=��

F

X

r6=s 6=t>�

F
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)(�
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+ �



- �

s

- �

t

)

: (C.9)

Note that there is no fator of 1=8 here sine there are no \equivalent pairs".



Appendix D

Harmoni Osillator Basis

D.1 Unoupled representation

The HF wavefuntions are de�ned by their expansion oeÆients in a spherial

harmoni osillator basis. The harmoni osillator wavefuntions are separated

into radial and angular parts:

�

njl

(r) = R

nl

(r)Y

lm

l

(�;�); (D.1)

and are the solution of the Shr �odinger equation

-

�h
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2

r

2

�

a

(r) = e

(nljm)

a

�

a

(r): (D.2)

With spherial symmetry assumed the angular parts of the wavefuntion are sper-

ial harmonis. The radial equation is analytially solvable to give

R

nl

(r) =

v

u

u

t

2

l-n+1

(2n+ 2l+ 3)!!

b

3
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� f(2l+ 1)!!g
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2

=b

2

)e

-

r

2

2b

2

; (D.3)

where

b =

s

�h

m!

(D.4)

is the osillator size parameter, and L

n;l+1=2

is an assoiated Laguerre polynomial.

The ground state of the radial funtion is that whih has n = 0. The full osillator

wavefuntions (D.1) are orthonormal and form a omplete set. The orthogonal-

ity in the angular oordinates and quantum numbers omes from the spherial

harmonis:

Z

�

0

sin � d�

Z

2�

0

d�Y

�

lm

l

(�;�)Y

l

0

m

0

(�;�) = Æ

ll

0
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mm
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(D.5)

and in the radial funtion

Z

dr r

2

R

nl

(r)R

n

0

l

(r) = Æ

nn

0

: (D.6)
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D.2 Coupled representation

Sine the eigenstates of the single partile Hamiltonian are eigenstates of the total

angular momentum operator j

2

and not the orbital angular momentum operator

l

2

it is useful to onstrut harmoni osillator wavefuntions whih share these

symmetries. This is ahieved by oupling the spherial harmoni to a spinor to

give a spinor spherial harmoni:

Y

ljm

(�;�; �) =

h

Y

lm

l

(�;�)
 �

1=2

m

s

i

j

m

; (D.7)

where them without a subsript is the magenti quantum number assoiated with

the oupled angular momentum, and the symbol 
 represents a tensor oupling.

Expliitly this may be written as

Y

ljm

(�;�; �) =

X

m

l

m

s

hlm

l

1=2m

s

jjmiY

lm

l

(�;�)�

1=2

m

s

(D.8)

where hlm

l

1=2m

s

jjmi is a Clebsh-Gordan oeÆient.

The orthogonality relations are, in the oupled ase, the same for the radial

quantum number and, for the angular quantum numbers:
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(D.9)

D.3 Radial Derivatives

The radial derivative of a harmoni osillator eigenfuntion is quite simple sine

the derivatives of Laguerre polynomials are also Laguerre polynomials:

dL

n;l+1=2

(r

2

)

dr

= L

n-1;l+3=2

(r

2

) (D.10)

so that the derivative of the whole radial eigenfuntion is
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; (D.11)

where N is the same normalization fator as in Equation (D.3).Thus any funtion

of the density or its derivatives may be evaluated exatly in terms of the harmoni

osillator states.



Appendix E

Hartree{Fok Potential for the

Separable Fore.

This appendix ontains derivations of the Hartree{Fok energy, potential and ma-

trix elements for all the terms of the nulear fore used in the work.

The Hartree{Fok potential is obtained from a variation of the HF energy as

detailed in Appendix A.

E.1 Variational priniple

The normal funtional variation is employed, viz.

Z

dx

X

a

Æ'

�

a

(r)

Æ'

�

b

(x)

=

Z

dx

X

a

Æ

3

(r- x)Æ

ab

(E.1)

where a and b label all the good quantum numbers of a single partile state

(N; l; j;m; �) and x and r are the three-dimensional spatial oordinates plus spin

and isospin oordinates. The wave funtions, ' are the full single partile wave

funtions, inluding radial and angular parts, as well as a spinor and an isospinor

The integral over x is really an integral over the ontinuous oordinates and a sum-

mation over the disrete ones and the Dira delta inludes a Kroneker delta for

these oordinates. For most terms in the derivation whih follows, this notation

suÆes and it is not neessary to break the wave funtions ' up into their sepa-

rate parts. However, for the terms whih inlude spatial derivative operators, it is

neessary to onsider a variation ating only using theR part of the wave funtion.

This is possible to do due to the assumed symmetries of the HF wave funtions

and the fat that only nulei with ompletely full j-sub-shells are onsidered.

The appropriate variational priniple is

X
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: (E.2)
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Here, the oordinates r and x are just the one-dimensional spatial oordinates. To

show that this is true, one an onsider a simple potential, whih is just a onstant,

V(r

1

; r

2

) = k. Then the energy from this potential is

E = k
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dr�(r)

!

2

:

A single variation of whih gives
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or X = R
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where the dimensions of eah spatial integration and delta funtion have been

made expliit. The two methods of variation then result in the same one-

dimensional HF potentials if the relation (E.2) is used. Of ourse, in the �rst ase

one has still to perform the angular and dimensional redution, whih aounts

for these fators.

E.2 Hartree-Fok Energy

E.2.1 Monopole term

The monopole interation is written in oordinate spae as
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The physial interpretation of these terms is disussed in Chapter 3.

Sine the �rst two terms of the fore are funtionally idential terms, it will

suÆe to go through the derivation for just one term. In what follows only the

expressions for the attrative part of the potential, with subsript a, will be de-

rived.

The energy ontribution from this two-body fore an be written

E =
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Central term

The energy ontribution from the \entral term", whih is de�ned as that part of

the attrative fore with no isospin operator, is
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The diret term in Equation (E.7) may be written
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where the total density has been de�ned as the sum of the proton and neutron

densities as
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We de�neN
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similarly for the repulsive term parameters. The exhange term an-

not be simpli�ed in terms of the one-body density. It may, however be expressed
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and a total nonloal density �(r
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where the spae part of the exhange integral has been de�ned as
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with a similar de�nition forM

�

r

, with the parameter �

r

.

Isospin-dependent term

To alulate the energy due to the isospin-dependent term of the monopole inter-

ation, one needs to examine the properties of the isospin operators on the four

possible ombinations of unoupled 2-body isospinors. We represent a proton

state by the letter p and a neutron state by the letter n:
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where � may represent either a neutron or a proton, and �� represents the other

nuleon speies. To arrive at an expression for the ontribution to the energy from

this term, the sum is split into terms with �
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. Firstly the diret

term:
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and �
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so that the total energy ontribution from these terms is
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in whih the funtion
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is de�ned. The exhange term is also alulated by splitting it into two sums. For
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so that the total energy ontribution due to the exhange term of the isospin-

dependent part of the fore is
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Derivative term

The energy due to the diret part of this term is
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The exhange term an be written
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We may de�ne the 6-dimension integral to be M

d

in analogy with the other ex-

hange integrals.

Spin-orbit term

To evaluate the energy ontribution from the spin-orbit term, it is noted that
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and the at of this operator on a single partile state is
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This eigenvalue, w
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, is abbreviated for brevity as,
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The spin-orbit energy, then, an be written:
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where the \weighted density" is de�ned as
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and N

w

to be the integral in the above expression. In summary, the omplete

expression of the energy due to the monopole and spin-orbit terms may be written

as
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Higher Multipole terms

The energy due to the dipole or quadrupole interations may be written
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The diret ontribution to the HF energy for a spherial nuleus in whih eah

shell is �lled is zero. To show this one notes that the fore is separable so that the

sums over i and j an be onsidered separately. Looking just at the angular part

of the sum over i (whih subsript an be dropped without onfusion), one has
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so for the values of � of interest, i.e. 1 and 2, there is no diret ontribution

to the Hartree-Fok energy. The exhange term is just evaluated diretly from

expression (E.33).
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E.2.2 Hartree{Fok Potential

To determine the one-body Hartree{Fok potential, the variational priniple is

used, as desribed at the beginning of this Appendix, to minimize the energy. The

ontributions from the various terms in the energy are as follows:
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so that the �rst term in (E.35) is
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giving a ontribution to the HF mean{�eld of

U(x) = -W
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Here U(x) denotes the partiular ontribution to the HF potential, and the same

funtion will be used throughout this derivation to denote other ontributions. In

the end U(x) will be used to mean the sum of all the ontributions together.

The seond term in (E.35) is
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whih gives a ontribution to the Hartree{Fok potential of
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Now is performed the variation of the exhange energy:
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The �rst term involves the variation of f

�

a

as with the diret part, and the ontri-

bution to the (loal) Hartree{Fok potential an be written down as
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Variation of the funtion M
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is as follows:
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By relabelling of indies and oordinates, the �rst and seond terms are seen to

be equal, as are the third and fourth terms. This variation then beomes:
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The �rst term ontributes to a nonloal Hartree{Fok potential:
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and the other term ontributes to the loal Hartree{Fok potential:
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where G

�

a

(x) is de�ned as
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Isospin-dependent term

The funtional variation of the energy whih omes from the diret part of the

isospin-dependent term (E.18) is
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The �rst term ontributes the following to the Hartree{Fok potential:
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From the variation of �N

�

a

there is a ontribution whih applies equally to the

proton and neutron Hartree{Fok potential:
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where Æ�(x) = �

p
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(x). There is also a ontribution whih depends on the

nuleon speies. The ontribution to the proton potential is
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and the ontribution to the neutron potential is
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De�ne a quantity �
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The variation of the exhange term is
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The variation of f

�

a

proeeds as before, giving rise to a ontribution to the loal

Hartree{Fok potential of
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The varation of the exhange integrals, M

(��)

�

a

and M

(� ��)

�

a

, is rather ompliated.

Firstly, let's look at M

(��)

�

a

. It onsists of a sum of two terms whih di�er only by

the isospin index. Let us then onsider the ase where the index labels proton

states. The result for the neutron states will be idential in form.
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Here, the �rst two terms are equal (with suitable relabelling of indies), as are the

third and fourth terms. The expression simpli�es to:
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Note that in the seond term, the index b inludes both proton and neutron states.

The �rst term gives rise to a non-loal potential whih ats on protons only:
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and the seond term gives a ontribution to the loal Hartree{Fok potential, of

both protons and neutrons, of
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Replaing the proton label everywhere by a neutron label gives a non-loal neutron

potential
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and a ontribution to the one-body potential whih applies to both nuleon speies

of
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This leaves just the exhange terms where the isospins of states i and j di�er:
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The �rst term gives rise to a nonloal potential, ating only on proton states:
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The next term produes a nonloal neutron potential:
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The terms arising from the variation of the density apply both to neutron and

proton states. The third term gives a loal HF potential of

U(x) =
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where G
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G

(pn)

�

a

(x) =

Z

d

3

r�

p

(r; x)�

n

(x; r)�

�

a

(r) (E.66)

The fourth term di�ers from the third only by the exhanging of labels p$ n.

Derivative Term

The variation of the diret energy of the derivative term gives
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The �rst terms is simply evaluated as

= kN

d

r
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(x) (E.68)

so that it gives a ontribution to the HF potential of

U(x) = kN

d
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2

�(x) (E.69)
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Sine the density depends only on the radial oordinate, the operation of the lapla-

ian on the density is
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�(r): (E.70)

Then the variation of the seond term, with partial derivatives with respet to the

oordinate r, is best arried out by expliitly varying just the radial funtion. The

variation of this term is
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Integrating one by parts gives
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and one more {
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so this also gives a ontribution to the HF potential of

U(x) = kN

d

r
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�(x): (E.74)

The exhange potential in this ase is rather ompliated and onsists of alulating

the ation of the Laplaian on the density matries. A simple approximation whih

an be made is to replae the density matries with the loal one-body density:
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In the ase that f(r

1
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2

) = 1 the replaement is an identity. For simpliity onsider

that the densities are of a single nuleon speies, q

ZZ

d

3

r

1

d

3

r

2

�

q

(r

1

; r

2

)�

q

(r

2

; r

1

) =

ZZ

d

3

r

1

d

3

r

2

N

q

X

i=1

N

q

X

j=1

'

�

i

(r

2

)'

�

j

(r

1

)'

i

(r

1

)'

j

(r

2

)

=

N

q

X

i=1

N

q

X

j=1

 

Z

d

3

r

1

'

�

j

(r

1

)'

i

(r

1

)

! 

Z

d

3

r

2

'

�

i

(r

2

)'

i

(r

2

)

!

=

N

q

X

i=1

N

q

X

j=1

Æ

ij

Æ

ij

=

N

q

X

i=1

1 = N

q

(E.76)

and
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For other values of f(r

1

; r

2

) the replaement is an approximation. However, in

ases where the exhange terms are diretly alulable it is shown to be a good one

and its use here should be onsidered better than ignoring the term ompletely.

The exhange energy, then, is
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The variation of the �rst � gives simply a diret ontribution to the HF potential:
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The variation of the potential (the rearrangement term) proeeds:
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In alulating the diret term it was shown that the ation of the variational op-

erator on a Laplaian was to move the Laplaian to at on the parts of the integral

not subjet to the variation. This would lead to a term of the form

� r

2

(�(r)r

2

�(r)) (E.81)

whih inludes alulating fourth derivatives of the density, whih is too umber-

some to be onsidered an worthwhile approximation. If one returns to the full

expression for the exhange energy and varies the potential in the matrix element

to look at the rearrangement term, one has
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Here the fator of 1=2 has been dropped sine there is also an idential term with

the variational operator ating on the term of the potential in r

2

. Sine the Lapla-

ian being varied only operates on r

1

, when it is taken to at on all the terms not

being varied, it does not then at on r

2
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), but only on those parts dependent

on r
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{ the density matrixes. At this stage the approximation may be applied to

give
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where the approximation is taken with some aution sine the funton f(r

1

; r

2

)

ontains derivative operators and delta funtions. In any ase the result here is
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the same magnitude as with the safer invoation of the approximation above. It's

numerial value in atual alulations, like the exhange terms elsewhere, is rather

smaller than the diret term. This being so, the term may be negleted. If it is

not, the entire ontribution from the exhange part of the derivative term to the

HF potential is approximated as
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(E.84)

Spin-Orbit Term

The spin-orbit energy is
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whih may be varied with respet to the radial wavefuntion as
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Using the variational priniple for the radial wavefuntions (E.2), the seond term

is just
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whih gives rise to a state-dependent potential
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The �rst term requires an integration by parts:
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so that the total HF potential arising from the spin-orbit fore is
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The potential is �nite at the origin sine �

w

(x) disappears at x = 0 due to the fat

that the weightw is zero for s-states, and the derivatives of the densities disappear

also at x = 0 sine the densities must be at at the origin to ensure that it varies

smoothly.

Colleted Terms

Bringing all the terms together, the Loal Hartree-Fok Potential due to the

monopole interation is
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and the nonloal Hartree{Fok potential is
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In addition there is a ontribution to the loal HF potential whih depends upon

the state on whih it is ating:
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Appendix F

Perturbation Terms for Separable Fore

F.1 Seond Order Energy Corretion

As shown in Appendix B the seond order orretion to the total energy is obtained

by evaluating the following sum:
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where the labels a, b,  and d denote all the quantum numbers labelling eah

state, viz. N, l, j, m and �, and ~v is the two-body interation.

Sine the single-partile energies � are independent of the m quantum num-

bers, it is possible to sum the squared matrix elements over m to give a losed-

form expression. To do this, the matrix element is expanded as a sum of ontri-

butions from eah of the terms in the potential, then eah of the resulting terms

may have itsm numbers summed over. De�ning the greek letters �, �, � and � to

be the subset of quantum numbers � = fN; l; j; �g
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, the sum (F.1) may be written
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where the Kroneker delta symbols serve to restrit m

a

6= m

b

when all the other

quantum numbers of partile a are the same as those of partile b and likewise

for partiles r and s. In this way the summation over the quantum numbers may

is unrestrited. Looking at the terms whih do inlude these delta symbols, it is

easy to show that they disappear. For instane, the term with Æ
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whih is zero sine the antisymmetrized matrix element vanished when the two

states in the bra (or the ket) are the same.

For the present purposes the potential (3.1, 3.4, 3.5) may be expressed in a

way whih hides all the dependene on the quantum numbers N, l, j and � and

puts them in funtions F
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and F
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for the monopole, dipole and quadrupole

interations respetively:
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Non-antisymmetrized matrix elements of eah of these terms are then
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The matrix element of a spherial harmoni between spinor spherial harmoni

states, in the ase of the oupling order l + 1=2 = j whih is used throught this

work, is [24℄
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where the shorthand notation

^

L = 2L+ 1 has been used. Here, the parts indepen-

dent of m (the redued matrix elements) may be subsumed into funtions �
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Note also that the monopole fore may be expressed in this form, too:
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sine the sum is just Æ
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. This means the monopole � is de�ned as �
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. This being so, it is onvenient to onsider only a generalized

multipole form whih orresponds to the monopole, dipole and quadrupole terms

upon suitable substitution for a parameter � (0,1 or 2 respetively):
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Furthermore sine the F and � numbers always appear together with the same

super- and subsripts they may, to redue notational lutter, be rede�ned as one

number:
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= F
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(F.10)

The multipole operators are onstruted so as to be salar. To take advantage

of this, and also to verify it, the matrix elements may be evaluated by oupling

the two body states to good total angular momentum. An antisymmetrized matrix

element of given mutipole may be written
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This oupling was done to make the dependene of the matrix element on the

quantum numbers m

a

� � �m

s

as simple as possible so that they may be summed

out later in the expression for the energy orretion. It is possible at this stage to

greatly simplify the angular dependene still in the oupled matrix elements. To

begin, they are unoupled again:
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This sum of four Clebsh-Gordan oeÆients over fourmagneti quantum numbers

an be redued to a 9-j symbol and two Clebsh-Gordan oeÆients summed over

one angular momentum and its projetion. This gives for the matrix element
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From the �rst Clebsh-Gordan oeÆient one immediately has the ondition � =

0 so that � may be summed out. Then this Clebsh-Gordan oeÆient may be

summed over �:
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Inserting this in the above expression and summing over k the matrix element

beomes
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The remaining Clebsh-Gordan oeÆient is Æ

JJ

0

Æ

MM

0

. This shows that the mul-

tipole operators are indeed salars. The 9-j symbol with a zero redues to a 6-j

symbol:
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thus the matrix element redues to
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The full antisymmetrized matrix element whih appears in the sum for the energy

orretion is thus
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In the expression (F.1) the sum over m

a

� � �m

s

of the square of these matrix

elements needs to be evaluated. All possible terms appearing here an be onsid-

ered by looking at two terms; habjV
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The quantum numbers m

a

and m

b

may be summed over the two Clebsh-Gordan

oeÆients in whih they appear to give Æ

JJ

0

Æ

MM

0

. Likewise m

r

and m

s

. Summing

over both M and M

0

then gives a fator of (2J + 1). J

0

may be trivially summed

over thanks to the Kroneker delta. This leaves one sum:
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:

Providing the triplets (j

a

; j

r

; �) and (j

b

; j

s

; �

0

) satisfy the triangle relation, the sum

over J redues to Æ

��

0

^

�

-1

[104℄. The ondition of satisfying the triangle relations

is seen to already be true due to the � funtions. The �nal answer for this term is

then
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The Kroneker delta in � and �

0

shows that there are no ross terms between

multipoles.

The other possible term is
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:

Again the four Clebsh-Gordan oeÆients sum out and M, M

0

and J

0

may be

summed over:

X

m

a

���m

s

habjV

�

jrsihabjV

�

jsri = (-1)

j

r

+j

s

|̂

a

|̂

b

~

F

����

�

~

F

����

�

0

�

X

J

^

J(-1)

J

�

j

s

j

r

J

j

a

j

b

�

�

j

r

j

s

J

j

a

j

b

�

0



:

This sum over two 6-j symbols an be redued to a single 6-j symbol[104℄:
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so that the summed matrix elements are
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Now there is no Kroneker delta in � and �

0

so that there may appear ross terms

of this form between multipoles.
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When expanding the squared matrix element in (F.1) over the six terms of V

(one diret and one exhange matrix element from eah of the three multipoles)

there are 7!=5!2! = 21 terms. Many of these an be ombined sine the sum over r

runs over exatly the same states as s so, for example, the summed diret � diret

term for a given multipole is the same as the summed exhange � exhange. Fur-

thermore it has been show that some terms are zero. In fat, of the 21 terms, just

9 remain. The �nal expression for the seond order energy orretion is obtained

by inserting the appropriate ombinations of � and �

0

in the above expression.

After simplifying the ases in whih one or more of �, �

0

and �

00

equals zero, the

result is:
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F.2 Third Order Energy Corretion

F.2.1 Hole-Hole Sattering term

The energy orretion due to the hole-hole-sattering diagram is
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Again, sine the single partile energies are independent of m, the m quantum

numbers may be summed out of produt of matrix elements. As in the seond

order term, one must be areful to exlude terms in whih b = a or  = d. It is

seen, however, that these terms vanish so may be inluded in the sum without

danger.

The produt of three antisymmetrized matrix elements expands to a sum of

8 terms of produts of three non-antisymmetrized matrix elements. Using the

following fats,

habjVjrsi = hbajVjsri

habjVjrsi = hrsjVjabi;
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one an show that these eight terms pair up into four terms. Furthermore, sine

these terms are summed over labels whih run over the same states as other labels

summed over, onemay swap pairs of these labels without a�eting the result. This

operation enables one to identify the four terms as really being two independent

terms. Going through this proess, then, one an show that the above sum (F.21)

an be written
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This involves two di�erent terms, eah of whih needs to be evaluated. Looking

at the �rst, with the possibility of a di�erent multipolarity for eah;
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:

As in the ase of the seond order orretion, the numbers m

a

� � �m

s

may be

summed over giving delta funtions in the J and M numbers, all of whih but

one J may be trivially summed, to give:
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:

This sum of three 6-j symbols is known[104℄ and gives for the sum of three matrix

elements;
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The other term, after summing out the Clebsh-Gordan CoeÆients, is
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Now all that remains is to evaluate these ontributions for the possible values of

�, �

0

and �

00

whih arise. Sine eah of these numbers an take on three di�erent

values there are 3

3

= 27 di�erent terms to evaluate. By observing that the labels

a and b run over the same states and always appear together in the energy de-

nominator, they may be interhanged without e�et, likewise  and d, and r and

s. Then, 9 of the 27 terms may be identi�ed with another 9 to give 18 independent

terms. Of these, 7 vanish for the 'diret' term (F.23), but all are �nite in the ex-

hange term (F.24). For those terms in whih at least one of �, �

0

and �

00

is zero,

the 6- and 9-j symbols simplify. The full expression for the third order energy

orretion due the the h-h diagram is then
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� �

0

�

00

fator

1 1 1 1

1 1 2 2

1 2 1 1

1 2 2 2

2 1 2 1

2 2 2 1

Table F.1: Terms missing from expression (F.25) for the third order hole-hole

energy orretion

Here the ellipsis represents the terms whih annot be redued, i.e. those for

whih none of �, �

0

or �

00

are zero. These terms are shown in table F.1 and are

just the expressions (F.23) and (F.24) with the appropriate values of �, �

0

and �

00

and the fator as indiated in the table.

F.2.2 Partile-Partile Sattering term

The energy orretion due to the partile-partile sattering diagram is
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If one relabels this using a ! r, b ! s, r ! a, s ! b, t ! , u ! d, then the

matrix elements are exatly of the same form as the hole-hole expression, and the

labels pair up with others running over the same states in the same way as in the

hole-hole expression. The summation of the magneti quantum numbers in the

matrix elements may be arried out in exatly the same way. The expression for

the energy orretion is then
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where the expression elided in the square brakets is just that for the hole-hole

ase with the transformation of labels as above.

F.2.3 Partile-Hole Sattering term

In the previous terms the fat that eah single partile state ourred always with

the same partner in the two-partile state vetor greatly simpli�ed things. Speif-

ially it enabled one to ouple the two-body states to good J and then sum out
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the Clebsh-Gordan oeÆients whih resulted in a trivial way. For the p-h term

the situation is somewhat di�erent. The energy orretion is
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Fortunately, the need to worry about the restrition on the sum is again obviated

by the fat that the matrix elements are antisymmetri and that for eah restrition

both labels involved appear somewhere together in a bra or a ket and also together

in the energy denominator. It is not until one attempts to alulate seleted fourth

order diagrams that this beomes a diÆult issue.

Fewer redutions an be made in the expansion of the produt of three anti-

symmetri matrix elements than in the previous ases. Only two pairs of the 8

may be identi�ed to give for the energy orretion:
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To evaluate the sum over the 6 m quantum numbers it is still easier to ouple

the bras and kets to good J rather than to attempt to sum 6 dependent Clebsh-

Gordan symbols. For the �rst two terms of (F.29), the oupling of the matrix

elements gives:
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To perform this sum, one takes the �rst four Clebsh-Gordan oeÆients and sums

them over the magneti numbers whih appear twie:
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This result is then ombined with the remaining two Clebsh-Gordan oeÆients

and sums over magneti numbers
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Now the sums over the remaining m states are arried out to give for the sum

(F.30)
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Now the representation of the redued matrix elements in terms of the 6-j symbols

(F.15) may be substituted. Looking �rst at the diret part of the one antisymmetri

matrix element, one has:
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The sum of three 6-j symbols and one 9-j symbol in this ase may be obtained in

steps. The sum over J

00

of a fator, and one 6-j and one 9-j may be performed to

give two 6-j symbols. This leaves a sum over two indies of four 6-j symbols:
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Now J

0

, appearing in three of the 6-j symbols may be summed over to give a 9-j

symbol, leaving
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Finally the last sum, over J may be performed. The result is two 6-j symbols so

that the sum over m

a

� � �m

t

of the non-antisymmetrized matrix elements is
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The other 5 terms in (F.29) an be redued in a similar manner. The results are:
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Now the expression (F.29) an be evaluated using the redued sums over the m

quantum numbers. For eah of the six terms in (F.29) there are 27ways of labelling

�, �

0

and �

00

. This being the ase, that there are 27� 6 = 162 terms, they are not

expliitely listed here. It is noted, however, that for any term in whih at least one

of�, �

0

and�

00

is zero, the 6-j symbols will simplify, and the terms, although more

numberous for the partile-hole orretion, are individually no more ompliated

than for the partile-partile or hole-hole terms.



Appendix G

Neutron Star Equation of State

To obtain the equation of state for the nulear matter region of a neutron star,

the energy density of the neutron, proton, eletron and muon (npe�) matter is

written as a sum of nuleon and lepton ontributions[22℄:
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The matter is onsidered to be in equilibrium with respet to weak interations:

n$ p+ e
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-

whih implies the onditions on the hemial potentials:
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where the hemial potential is de�ned as

�

j

=

�e

�n

j

: (G.3)

A seond ondition arises from the fat that themattermust be eletrially neutral,

whih implies

n

p

= n

e

+ n

�

: (G.4)

For eah baryon number density frations are de�ned as
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where n

b

= n

p

+n

n

is the number of baryons. Lepton frations are onstrained by

the above onditions. Given these de�nitions and onditions, the EOS is given by

two expressions: The mass density
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and the pressure
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: (G.7)

By eliminating n

b

from these equations the EOS results giving pressure as a fun-

tion of mass density of the matter.

From 6.30, the energy density of asymmetri matter an be rendered in the

notation of neutron star theory as
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or, as a funtion of n

b

and the baryon frations as
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To simplify the alulation, the numbers 

p

and 

n

(whih are de�ned in Chapter 6)

are taken to be the same value, �, using an average nuleon massm
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= (1=2)(m
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). The �rst two terms thus beome �n
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This expression is then used to work out the hemial potentials:
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where E = E
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so the hemial potentials are
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and
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and their di�erene is
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From the equilibrium ondition (G.2) one has
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The eletron hemial potential �

e

an be alulated as [106, 107℄
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The eletron fration, Y

e

must be equal to the proton fration to ensure harge

neutrality, at least belowmuon threshold. Furthermore sine Y

p

and Y

n

are related

by the ondition Y

p

+ Y
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= 1, the equation (G.15) an be used to ombine (G.14)

and (G.16) to give an expression whih an be solved for the equilibrium proton
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Above muon threshold, i.e. the di�erene between neutron and proton hem-

ial potentials exeeds the rest mass of the muon, the following ondition also

holds
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(G.18)

where �
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is [106℄

�

�

=

q

(m

�



2

)

2

+ �h

2



2

(3�

2

Y

�

n

b

)

2=3

(G.19)

and it is known from (G.2) that �

�

= �

e

. Now the ondition for harge neutrality

gives
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: (G.20)

From (G.16) and (G.19) and the ondition �
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, the eletron fration and the
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Now the expressions arising from the onditions
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Going bak to (G.1) the energy densities for eletrons, muons and neutrinos

still need to be evaluated. They are [107, 105℄:
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where k = (3�
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. The eletron energy is approxi-

mated to be ultrarelativisti. In addition there is a ontribution from the Coulomb

interation. The diret term is zero due to the harge neutrality of the system, but

the exhange term provides a small ontribution:
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Now that the entire expression for the energy density is known, the pressure

may be evaluated. Sine the protons and neutrons interat strongly their partial

pressures annot be de�ned. Instead, the nuleon pressure is alulated:
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The eletron, muon and neutrino pressures and the Coulomb exhange pressure

are alulated in the same way to be
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Now there is an expression for the pressure as a funtion of the speies fra-

tions and the baryon density. The frations are themselves solvable given just

the baryon density, so by solving the equations given, one an evaluate the pres-

sure for a given density, whih gives us then the equation of state.

To relate the number density to the mass density the following relation is used
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This gives � in nulear units (MeV fm

-3
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). To overt to astrophysial units, the

following fator is neessary:
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