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Background The giant isoscalar monopole (ISM) resonances can be connected with the incompressibility of uniform nuclear
matter. Experimental and theoretical studies suggest that the structural effect may present in the ISM strengths.
Recently observed ISM strengths in 100Mo show a multiple peak structure, which may indicate an onset of static triaxial
deformations in the ground state of this nucleus.

Purpose We intend to perform a microscopic study of the ISM strength of 100Mo and study if the observed features are due
to a triaixally deformed ground state.

Methods We perform deformation constraint symmetry-unrestricted 3D time-dependent density functional theory (TDDFT)
calculations for the ISM mode in 100Mo. Monopole moment as a function of time is obtained by time propagating states
based on deformations. A Fourier transform is then performed on the obtained response functions of the monopole and
quadrupole moments. The resulted ISM strength functions are compared with experimental data.

Results The calculated results using four different energy-density functionals show that a β2 value of 0.25 give a two-peak
structure of the strength function. With increasing γ from 10◦ to 30◦ results in the lower peak to split into two, making
the general shape of the strength functions closer to the data.

Conclusions Our microscopic TDDFT + BCS analyses suggest that the 100Mo is triaxially deformed in the ground state.
The calculated isoscalar Q20 and Q22 strength functions peak at lower energies. The coupling of these two modes with
the ISM mode is the reason for the three-peak/plateau structure in the strength function of 100Mo.

PACS numbers:

I. INTRODUCTION

Recent years have seen renewed interest in the
compression-mode resonances, such as the isoscalar giant
resonances in nuclear physics [3]. From the resonance it
is possible to extract the incompressiblity of the uniform
nuclear matter, which is an important parameter of the
equation of state.

In various density functional theories, the incompress-
iblity parameter naturally arises as soon as the model
parameters are determined1. Consequently, it is custom-
ary to take an energy density functional that successfully
describes properties of finite nuclei and examine its per-
formance when applied to the description of the isoscalar
giant monopole resonance. If the theory can simultane-
ously account for the ground-state data as well as the
observed resonance energies, then its incomressibility is
considered reliable.

Although progress has been made [4], some issues re-
main. For example, most EDFs systematically overesti-
mate the isoscalar giant monopole resonance energies of
tin isotopes [5]. This is curious because the same theo-
ries can reproduce the ground state observables as well as
the resonance energies in other nuclei, such as 90Zr and
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1 The coupling constants of an energy density functional (EDF) are
usually determined to give reasonable description for the ground-
state properties of the double-magic nuclei

208Pb [6]. This suggests that the structural information
becomes important in describing the isoscalar monopole
(ISM) mode and the current theories seem to be lack-
ing. To have a better model and hence an accurate in-
compressibility parameter, it is desirable to expand the
knowledge of the ISM vibration in other nuclei.

Recently, the ISM mode were observed systemati-
cally and the associated strengths were extracted for
90Zr, 92,94,96,98,100Mo nuclei [1, 2]. Focusing on the Mo
isotopes, for 92,94,96,98Mo, the observed strengths as a
function of excitation energy show generic single peaks
around 16 < E < 17MeV. From 94Mo, a lower-energy
shoulder starts to emerge near E = 13MeV and becomes
more pronounced in 96,98Mo. For 100Mo, the structure of
the strength function shows a multi-peak feature.

While the strengths in the lighter Mo isotopes seem to
be due to a spherical or weak deformation, the strength
function of 100Mo may indicate a large static quadrupole
deformation in the ground state. Indeed, in the analysis
of the isovector dipole strength, the situation of 100Mo
is also different from the lighter isotopes [7]. In Ref. [8]
the issue of pairing correlation and the axial deformation
have been discussed.

In this work, we calculate the strength of the ISM vi-
bration mode by constraining the ground state to a few
typical deformations. In particular, the TDDFT + BCS
code allow for the continuous increase of the triaxial de-
gree of freedom. The resulted strength functions are com-
pared with the experimental data. This approach may
allow for a quantitative determination of a static triaxial
deformation in the ground state of 100Mo. In Sec. II we
briefly introduce the TDDFT + BCS method and the
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FIG. 1: The ISM strengths calculated using the TDDFT method with the SkM* EDF. The experimental data are extracted
from Refs. [1, 2].

parameters used. Section III presents the results and
discussions. Section IV summarizes the current work.

II. THE MODEL

To study the isoscalar monopole vibration of triaxi-
ally deformed nuclei, we perform three-dimensional (3D)
symmetry-unrestricted TDDFT calculations [7]. In the
static calculations, the functional contains all the time-
even and time-odd terms except for the tensor contri-
bution. This is due to the consideration of the local
gauge invariance of the energy density. For the pair-
ing treatment, we adopt the Bardeen-Cooper-Schrieffer
(BCS) method. In Ref. [7] we applied the same TDDFT
+ BCS method to describe the isovector dipole reso-
nances in the Zr, Mo, and Ru nuclei. In this work, we
use the same pairing strengths for the ground state of
100Mo.

We choose to use four EDFs, namely the SkM* [9],
SkP [10], unedf1 [11], and SLy4 [12] EDFs. The SkM*
and unedf1 EDFs are fitted to take into account the
properties of deformed nuclei. The SkP EDF has smaller
incompressibility parameter K∞ and m∗/m = 1. This
makes SkP successful in describing the isoscalar giant
monopole resonance in tin isotopes. The SLy4 EDF was
fitted to have better performance for the neutron-rich
nuclei.

In this work we calculate the ISM strengths with the
quadrupole deformations being constrained at a few de-
formations and compare the calculated strength func-
tions with observed ones. The quadrupole deformation
are characterized by the parameters β2 and γ which are
related to the quadrupole moments via

β2 =

√
5π

9

1

AR2
0

√
Q2

20 +Q2
22,

γ = arctan (Q22/Q20),

where A = N +Z and R0 = 1.2A1/3 fm. The quadrupole
moments Q20 and Q22 are defined as

Q20 ≡ ⟨Φ|2z2 − x2 − y2|Φ⟩,
Q22 ≡

√
3⟨Φ|x2 − y2|Φ⟩,

where |Φ⟩ denotes the mean-field ground state. The con-
straint calculations similar to those of Ref. [13] are per-
formed to give the desired Q20 and Q22 value.
The ISM vibrational mode is accessed by applying a

small instantaneous boost on single-particle wavefunc-
tions

ψi,q(r, σ; t = 0+) ≡ exp
(
−i ϵ r2

)
ψi,q(r, σ), (1)

where the typical magnitude of |ϵ| is 10−3 fm−2. The fol-
lowing time-dependent procedure are then performed to
obtain the time varying mean-field wavefunction |Φ(t)⟩,
as described in Ref. [7]. The expection value of the
isoscalar monopole moment D(t) = ⟨Φ(t)|r2|Φ(t)⟩ is
recorded up to 1000 fm/c. The strength function is calcu-
lated by performing a Fourier transform of the monopole
moment

S(E;E0) = − 1

πℏϵ
Im

∫
D(t) e(iE−Γ/2)t/ℏ dt, (2)

where the smoothing parameter is taken to be Γ =
2MeV. We expand the time propagator in terms of the
Taylor series up to the fourth order. The energy-weighted
sum rules obtained by integrating the strength func-
tions 2 and those obtained using the ground-state densi-
ties [14] are compared. The results agree on the level of
a few percentages (< 5%).

III. RESULTS AND DISCUSSIONS

Figure 1 shows the ISM strengths calculated for a few
deformations using the TDDFT + BCS method (SkM*



3

FIG. 2: The strengths corresponding to the response of the
Q20 (S20), Q21 (S21), and Q22 (S22) moments.

EDF). For the smaller quadrupole deformations (β2 =
0.16), the main peaks at higher energy (E ≈ 17MeV) are
much more pronounced than the low-energy peaks. With
increasing triaxial deformation γ, the lower-energy peaks
for γ = 0◦ at E ≈ 13.5MeV become less distinguishable
and become shoulders at γ = 30◦.
For lighter Mo isotopes, the observed ISM strength

functions show pronounced giant monopole peaks and
shoulders on the lower-energy side [1, 2]. It can be ex-
pected that this feature in the lighter isotopes can be re-
produced by the calculated strengths based on a smaller
deformations (β2 ≈ 0.16) as shown in Fig. 1.

For a larger β2 = 0.28, the two peaks become more sep-
arate. With γ = 20◦, 30◦, the low-energy peak separates
into two peaks forming a broader plateau joining the peak
at higher energy. The main peaks occurring at higher en-
ergies E ≈ 17.5MeV are much lower in height compared
to those calculated based on a smaller β2 = 0.16.

In Fig. 1, the calculated strength functions are com-
pared with the experimental data [1, 2]. It can be seen
that all the calculations overestimate the energy of the
second peak. The observed strength function peaks at
E ≈ 16.5MeV. The calculations overestimate the data
by ≈ 0.5 and ≈ 1.0MeV for β2 = 0.16 and β2 = 0.27, re-
spectively. This is due to a large incompressibility (K∞)
that the SkM* EDF predicts, K∞ = 217MeV, as noted
in Ref. [8].

Nevertheless, for (β2, γ)=(0.28, 20◦/30◦), the calcu-
lated strengths show features that reproduce the data
both in the rising part and the general peak structure.

Compared to the strength functions of a smaller β2 value,
those corresponding to larger β2 are more spread and less
pronounced. In particular, when the γ value is increased
the lower peak becomes a plateau, which becomes closer
to the experimental data.

In Ref. [8] the low-energy shoulder has been interpreted
as a coupling between the isoscalar monopole and the
isoscalar quadrupole vibration mode. A similar two-peak
structure has been discussed in the ISM strengths in the
Sm isotopes in random-phase approximation calculations
based on axial deformations [15]. These studies draw
their conclusions from an examination of the isoscalar
quadrupole strength functions which peak at similar en-
ergy as that of the low-energy peak of the ISM strength
function. Here we try to understand the coupling in our
TDDFT + BCS calculation [16].

In Fig. 2 we plot the Fourier transform of the rele-
vant quadrupole moments, Q20,21,22(t)’s after the ISM
boost, which corresponds to the solid red curves (β, γ) =
(0.28, 0◦/30◦) in Fig. 1. We note that the two quadrupole
modes, S20 and S22, show significant strengths at E =
12.5 and 14.5MeV which are responsible for the first and
second peaks in low energy region (see Fig. 1). Whereas
the S21 mode shows zero strength meaning there is no
coupling between this mode and the ISM mode.

When γ = 0◦ the coupling between the Q22 mode and
the ISM mode is zero. Because for an axially deformed
nucleus with the z-axis being the symmetry axis, the
Q22 ≡

√
3⟨x2 − y2⟩ value will stay zero when the whole

nucleus is expanding or contracting equally in three di-
rections. The same reasoning applies to the Q21 ∝ ⟨xz⟩
case too. In this case, an r2 boost will not make the
density lose the xy, xz, or yz plane flip symmetry.

Figure 3 shows the strength functions calculated with
the SkP EDF. This EDF has a K∞ = 202MeV. In spher-
ical calculations, the single resonance peak is supposed to
be lower compared to the spherical SkM* result. In our
deformed calculations, the main peak is delayed but still
reproduces the resonance energy at E ≈ 16.8MeV. The
energy of the main peak based on results of β2 = 0.16
are lower by 0.5MeV compared to the data. Again, we
notice a larger β2 value (0.25) together with a triaxial de-
formation (30◦) can reproduce the general shape of the
observed strength function.

Figure 4 displays the ISM strengths calculated us-
ing the unedf1 EDF. This parameterization is obtained
by taking into account the properties of deformed nu-
clei. The K∞ = 220MeV for unedf1 parameterization.
Again, it can be seen that the strengths at the lower-
energy part can be reproduced by the calculation based
on a deformation of β2 ≈ 0.25, 0.30. For the results of
β2 = 0.25, we include γ = 20◦ and 30◦, it is clear that
the increase of γ results in the plateaus between the two
peaks. The heights of the calculated plateau part for
E ∼ 12− 14MeV are lower compared to other EDFs for
unedf1. Consequently, this parameter requires a larger
β2 = 0.3 value to best reproduce the data.

Figure 5 displays the strengths calculated using the



4

FIG. 3: Similar to Fig. 1, except for SkP EDF.

FIG. 4: Similar to Fig. 1, except for unedf1 EDF.

SLy4 EDF. For results based on a smaller deformation,
β2 ≈ 0.2, similar curves have been seen in the case of
the SkM* EDF. For the strength based on a deformation
of (β2,γ)=(0.28,30◦), we notice a similar agreement with
the data as those given by the SkM* EDF at the same
deformation (Fig. 1). However, the higher-energy peak
is at E ≈ 18.2MeV, which is ∼1.5MeV higher than the
observed one. This is due to the large K∞ = 230MeV
predicted by the SLy4 EDF.

One interesting observation is that all four EDFs pre-
dict similar widths for the strength functions at simi-
lar deformations. The SkM*, SLy4, and unedf1 EDFs
reproduce the energy of the rising part of the observed
strength function, but overestimate the second peak, giv-
ing a broader general strength peak. The results with
SkP EDF underestimate the energy corresponding to the
rising part but reproduce the second peak. We note that
the FSUGarnet parameter of relativistic mean field the-
ory seems to predict a narrower giant ISM peak in the
spherical calculations [2]. It is interesting to see the de-
formed calculation using this method [17].

IV. SUMMARY

In summary, we study the isoscalar monopole (ISM)
mode of the strength function in 100Mo using the
symmetry-unrestricted 3D time-dependent density func-
tional theory including a BCS pairing (TDDFT + BCS).
Since the shape of the strength function depends on
the ground state deformation, we constrain the ground
state to a few sampling deformations before the time-
dependent study.
The calculated strength functions show two peaks if

the axial deformation β2 is in the region of 2.5− 2.8. In-
creasing the triaxial parameter γ results in the low-energy
peak splitting and forming a plateau area in the low-
energy region (E ∼ 12− 14). When (β2, γ) = (0.28, 30◦),
the calculation reproduce the experimental data. Hence,
our microscopic calculations suggest a medium β2 value
and a static triaxial deformation in the ground state of
100Mo.
Our time-dependent study allows for studying the time

response of quadrupole moments after an ISM boost.
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FIG. 5: Similar to Fig. 1, except for SLy4 EDF.

The analyses show that the occurrence of the low-energy
peak is due to a coupling of the ISM mode and two
isoscalar quadrupole modes (K = 0, 2). When the nu-
cleus becomes triaxially deformed, the two quadrupole
modes split, resulting in the split of the low-energy peak.
This brings the calculation closer to the experimental
data.
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